ACADEMIC REGULATIONS (R18) COURSE STRUCTURE AND DETAILED SYLLABUS

For

M.Tech.- Regular Two Year Post Graduate Degree Programe (Effective from 2018-19)

MASTER OF TECHNOLOGY IN CAD & CAM

KANDULA SRINIVASA REDDY MEMORIAL COLLEGE OF ENGINEERING (UGC-Autonomous) Kadapa 516003, A.P (Approved by AICTE, Affiliated to JNTUA, Ananthapuramu, Accredited by NAAC)

(An ISO 14001:2004 & 9001: 2015 Certified Institution)

E-mail: principal@ksrmce.ac.in

Website: www.ksrmce.ac.in

KSRM COLLEGE OF ENGINEERING (AUTONOMOUS)

VISION & MISSION

VISION:

KSRMCE seeks to be recognized as one of the best engineering colleges in India in providing high standards of academics with most productive, creative learning environment by including research, innovation thoughts and producing graduates with human values & leadership qualities to serve nation.

MISSION:

M1: To provide high quality education in Engineering & Technology in order to bring out knowledgeable engineers.

M2: To creative environment a collaborative environment with stakeholders to take up need-based research and industry specific programs.

M3: To organize co-curricular and extracurricular activities for character and personality development to produce highly competent and motivated engineers and professionals to serve and lead the society.

DEPARTMENT OF MECHANICAL ENGINEERING

VISION & MISSION

VISION:

To evolve as a department of high repute in Mechanical Engineering and allied fields through effective teaching, learning process and research activities, operating with a sense of professional and social responsibility.

MISSION:

M1: To produce Mechanical Engineers with sound knowledge through quality teaching-learning process and well-designed curriculum.

M2: To induce critical thinking attitude and inculcate the use of modern tools through interdisciplinary research and develop entrepreneurial skills through industry-institute interaction.

M3: To provide opportunities/platforms for students to nurture leadership abilities and ethical values.

PROGRAM EDUCATIONAL OBJECTIVES

PEO1: To apply engineering principles to develop products, processes or knowledge to solve mechanical and associated engineering problems for successful career in mechanical engineering and allied fields.

PEO2: To pursue higher education, research and development and engage in the process of life-long learning.

PEO3: To demonstrate leadership qualities, professional ethics, and communication skills and adapt current technologies to meet the societal requirements.

PROGRAMME OUTCOMES

Engineering Graduates will be able to:

- 1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12 **Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES

PSO 1: To apply their knowledge in the domain of engineering mechanics, thermal andfluid sciences to solve engineering problems utilizing advanced technology.

PSO 2: To successfully apply the principles of design, analysis and implementation of mechanical systems/processes which have been learned as a part of the curriculum?

PSO 3: To Develop and implement new ideas on product design and development with thehelp of modern CAD/CAM tools, while ensuring best manufacturing practices.

KSRM College of Engineering, Kadapa-516003, AP Regulations for PG Programs in Engineering (R18PG) (Effective from 2018-19)

Index

1.0	Nomenclature
2.0	Short Title And Application1
3.0	Suspension And Amendment Of Rules
4.0	Requirements For Admission2
5.0	Structure Of The M. Tech Course
6.0	Registration And Enrolment
7.0	Assessment Procedure – Internal Tests And End Examinations
8.0	Method Of Assigning Letter Grades And Grade Points4
9.0	Requirements For Completing Subjects
10.0	Requirements For Taking End Examinations
11.0	Revaluation Of End Examination Scripts7
12.0	Supplementary End Examinations7
13.0	Requirements For Award Of M. Tech Degree7
14.0	Transitory Regulations

```
Curriculum and Syllabus.....10
```

1.0 Nomenclature

- **1.1** *Academic Term*: Extent of time during which academic instructions are initiated and completed
- **1.2** Academic Year: Academic Term of, approximately, one year duration that usually starts in June/July and ends in April/May next
- 1.3 Semester: Either of two Academic Terms that make up an Academic Year
- 1.4 Major: A specific field of study
- 1.5 *Minor*: An area outside of, or complementary to, a Major
- **1.6** *Subject*: An area of knowledge that is studied as part of a Course
- **1.7** *Core*: A subject that is mandatory for a Major course of study
- **1.8** *Elective*: A subject that is selected for study to suit one's individual needs
- **1.9** *Audit Subject*: A subject that is studied to meet certain requirements but has no credits assigned to it
- **1.10** *Humanities subjects*: Subjects that describe and interpret human achievements, problems and historical changes at individual and societal levels covering the disciplines of literature, history, and philosophy
- **1.11** *Social Sciences subjects*: Subjects that describe the mental and behavioural activities of individuals, groups, organizations, institutions, and nations covering the disciplines of anthropology, economics, linguistics, political science, and psychology
- 1.12 *Exam*: A test to measure one's progress, knowledge, or ability in a subject
- 1.13 Credit: A numerical weight given to a subject
- **1.14** *Grade*: A numerical or alphabetic designation measuring the level of achievement in an exam
- **1.15** *Attendance*: Physical presence of oneself in a classroom/laboratory forpurpose of a scheduled academic instruction
- **1.16** *Course*: A series of subjects that constitute a Major field of study
- **1.17** *Branch*: Same as Course
- **1.18** *Program*: Same as Course
- 1.19 Specialization: Same as branch
- **1.20** Degree: An academic title conferred to honour distinguished achievement.

2.0 Short Title and Application

- **2.1** These rules and regulations may be called as R18 PG and come into force from Academic Year 2018-19 and exist until superseded by new regulations
- **2.2** These rules and regulations are applicable to all post graduate courses in engineering and technology leading to Master's Degree in Technology (M. Tech)
- **2.3** The Specializations offered, at present, are:
 - 2.3.1 Geotechnical Engineering
 - 2.3.2 Power Systems
 - 2.3.3 CAD & CAM
 - 2.3.4 Digital Electronics and Communication Systems
 - 2.3.5 Computer Science and Engineering

2.4 The Institute may offer new Specializations in future to which these rules and regulations will be applicable

3.0 Suspension and Amendment of Rules

- **3.1** Academic Council has the authority to suspend a rule temporarily
- 3.2 Academic Council has the authority to amend a rule
- **3.3** For affirmative action on any suspension or amendment of a rule, an affirmative vote of three-fifths of the members present and voting shall be required in Academic Council.

4.0 Requirements for Admission

- **4.1** At present, admissions into first semester of various Specializations are governed by Government and the Affiliating University. The eligibility criteria and procedure for admission are prescribed by Government and Affiliating University
- **4.2** A student is not allowed change of Specialization after admission
- **4.3** A student must fulfill medical standards required for admission
- **4.4** The selected students are admitted into first semester after payment of the prescribed fees.

5.0 Structure of the M. Tech course

- **5.1** *Duration*: The duration of M. Tech degree course is four semesters
- **5.2** *Working Days*: Calendar for any semester shall be announced at least four weeks before its commencement. Minimum number of working days is90 per semester
- **5.3** *Curriculum*: Each Specialization shallhave core, elective and audit subjects. The curriculum for each Specialization shall be approved by its corresponding Board of Studies and then by the Academic Council
- **5.4** *Credits*: All subjects that are assessed for marks have credits assigned to them. The credits assigned to subjects shall be given in curriculum. The total number of credits for entire course is 68forallSpecializations. The distribution of total credits semester-wise is given in Table 1

Semester	Total Credits
First Semester	18
Second Semester	18
Third Semester	16
Fourth Semester	16
Total for entire course	68

Table 1 Semester-wise Total Credits

5.5 The curriculum and syllabus is given in Annexure-1 and Annexure-2 respectively

5.6 Responsibility and Advising: It is the responsibility of the student to understand and know the regulations and requirements to earn the degree. Each student admitted in to the degree programs is assigned to a Faculty Advisor who assists the student in designing an effective program of study. Students should consult their Faculty Advisors for selection of electives and for general advice on academic program

6.0 Registration and Enrolment

- **6.1** Prior to opening of each semester, every student shall register for all the creditbearing and audit subjects listed in curriculum of the semester. Excepting first semester, the registration for asemestershallbe done during a specified week after end examinations of previous semester. In first semester, the registration shall be done within six working days from date of opening. Recommendation of Faculty Advisor is needed for registration
- **6.2** Late registration will be permitted with a fine, decided from time to time, up to six working days from the last date specified for registration
- **6.3** A student will be eligible for registration for a semester if she or hei) is promoted to that semester, ii) has cleared all fees to the Institute, library and hostel of previous semester, and iii) is not disqualified for registration by a disciplinary action of the Institute
- **6.4** A student will be enrolled and allowed to attend the classes on successful registration and payment of necessary fees to Institution, library, and hostel
- **6.5** Registration and enrolment will be controlled by the Office of the Controller of Examinations

7.0 Assessment Procedure – Internal Tests and End Examinations

- **7.1** Performance of students in all subjects is assessed continuously through internal assessment tests and an End examination
- 7.2 Allocation of internal assessment and End examination marks
 - 7.2.1 For theory subjects, the allocation is 40 marks for internal assessment and 60 marks for End examination totaling 100 marks
 - 7.2.2 For laboratory/project work subjects, the allocation is 50 marks for internal assessment and 50 marks for End examination totaling 100 marks
 - 7.2.3 For mini-project/mini-project with seminar total 100 marks are allocated for internal assessment. There shall be no end examination for this mini-project
 - 7.2.4 For all audit subjects the allocation is 40 marks for internal assessment and no allocation for End examination
- 7.3 Internal Assessment Examinations
 - 7.3.1 Internal assessment means performance evaluation of students by faculty members who teach the subjects

- 7.3.2 For theory subjects, including audit subjects, the internal assessment shall be done by midterm tests. For each subject, two midterm tests will be conducted for 40 marks each and the internal assessment mark is the better of two marks. If any student abstains for any midterm test, she or he will be awarded zero marks for that midterm test. There shall be no choice of questions in midterm tests
- 7.3.3 For laboratory/practical subjects, the internal assessment will be based on regular laboratory work over full semester. The assessment will be done by the faculty concerned. The students shall be informed sufficiently early of the procedure to be followed for internal assessment
- 7.3.4 For subjects like seminar, project-work, industrial training, and comprehensive viva-voce, the internal assessment will be done by a concerned Department Committee consisting of two senior faculty members and faculty guide of concerned student. The assessment procedure will be informed sufficiently early to the students
- 7.4 End examinations
 - 7.4.1 End examinations shall be conducted after completion of coursework in each semester
 - 7.4.2 The question papers for theory subjects shall be set by faculty members outside of the Institute. The external faculty members for question paper setting will be selected by the Principal
 - 7.4.3 Evaluation of answer scripts shall be done by faculty members from outside of the Institute selected by the Principal
 - 7.4.4 For laboratory subjects, end examination shall be conducted by a committee consisting of two internal examiners. One examiner shall be recommended by Head of Department of concerned Major, and the other examiner shall be appointed by the Principal
 - 7.4.5 For project work viva-voce, End examination shall be conducted by a committee consisting of one internal examiner, one external examiner, and the concerned guide of the student. Internal examiner shall be appointed by Head of Department of concerned Major, and the external examiner shall be appointed by the Principal
 - 7.4.6 If a student abstains from End examination of any subject, for any reason, she or he shall be awarded zero marks in that subject
 - 7.4.7 There is no end examination for audit subjects.

8.0 Method of Assigning Letter Grades and Grade Points

8.1 For all credit-bearing subjects, performance of a student in a subject is indicated by a letter grade that corresponds to absolute marks earned in that subject. Each letter grade is assigned a numeric Grade Point that is used to compute Grade Point Average on a scale of 0 to 10

- **8.2** Performance of a student in both internal assessment and End examination will be considered for awarding grades for credit bearing subjects. Total marks earned in a subject is the sum of marks obtained in internal and End examinations in that subject
- **8.3** Pass grade A+ to D+ is assigned to a subject based on total marks earned in that subject provided that a student earns at least i) 35% of marks in End examination marks and ii) 50% of marks in internal and End examination marks put together; otherwise fail grade F will be assigned to that subject
- **8.4** Grade I will be assigned to a subject if a disciplinary action is pending and is not resolved before publication of results. Office of Controller of Examinations shall resolve the pending disciplinary action within six working days from the date of publication of results and change the grade to any of A+ to D+ or F
- **8.5** Grade X will be assigned to a subject if a student abstains for End examination of that subject
- **8.6** The absolute marks and corresponding letter grade and grade points are given in Table2

Absolute Marks	Letter Grade	Grade Points	Remark
95-100	A+	10.0	Pass
90-94	А	9.5	Pass
85-89	A-	9.0	Pass
80-84	B+	8.5	Pass
75-79	В	8.0	Pass
70-74	B-	7.5	Pass
65-69	C+	7.0	Pass
60-64	С	6.5	Pass
55-59	C-	6.0	Pass
50-54	D+	5.5	Pass
0-49	F	0.0	Fail
-	Ι	0.0	Result Withheld
-	Х	0.0	Absent for End Exam

Table 2 Letter Grades and Grade Points

8.7 *SGPA*: Semester Grade Point Average indicates the performance of a student in all credit-bearing subjects of a semester. SGPA is calculated as the weighted average of Grade Points of all subjects of the semester with corresponding credits of subjects as weights. Audit subjects are not considered for SGPA calculation

- **8.8** *CGPA*: Cumulative Grade Point Average indicates the performance of a student in all terms up to and including the current semester under consideration. CGPA is calculated as the weighted average of SGPAs with total credits in each semester as the weights
- **8.9** *Grade Card*: All students shall be issued Grade Cards after the publication of results of a semester. Grade Card is a statement of performance of a student in a semester. It contains information about each registered subject: type of subject, allocated credits, and letter grade earned.SGPA and CGPA will also be indicated

9.0 Requirements for Completing Subjects

- **9.1** A student shall complete all credit-bearing and audit subjects successfully to be eligible for award of degree
- **9.2** Credit-bearing subjects: A student is considered to have completed a creditbearing subject successfully and earned credits if she or he obtains a pass grade from A+ to D+ in that subject. If a student receives fail grade F or X in any subject, she or he must register for supplementary End examination for that subject as and when opportunity arises and improve grade to pass grade
- **9.3** *Audit subjects*: A student is considered to have successfully completed an audit subject if she or he earns at least 40% of marks in internal assessment marks. *Supplementary exam for audit subjects*: If a student fails in audit subject, she or he shall register for supplementary examination in that subject as and when the opportunity arises and pass that subject. The supplementary exam will be conducted for 40 marks covering the entire syllabus and student is deemed to have passed in the subject if she or he earns 16 marks (40% marks) in the supplementary exam, disregard of her or his performance in internal tests.

10.0 Requirements for taking End Examinations

- **10.1** A student is eligible to take regular End Examinations of current semester ifshe or he full fills the attendance requirement
- **10.2** A student shall be promoted from current semester to succeeding semesteron satisfying the attendance requirement
- **10.3** A student shall complete all credit-bearing and audit subjects successfully before taking End examination for project viva-voce
- **10.4** Attendance Requirement
 - 10.4.1 Attendance of students shall be recorded for credit-bearing and audit subjects as per the workload indicated in curriculum
 - 10.4.2 Total class-periods conducted shall be reckoned from beginning to end of a semester as published in academic calendar
 - 10.4.3 Aggregate Percentage of Attendance is calculated using total number of class-periods attended as numerator and total number of class- periods conducted for the concerned subject as the denominator

- 10.4.4 A minimum aggregate attendance of 75% is required for promotion to succeeding semester
- 10.4.5 A student can appeal to the Principal for condoning deficiency in aggregate attendance if she or he gets 65% or more aggregate attendance presenting a valid reason for deficiency. Such a student will be granted promotion if the Principal pardons the deficiency. Principal has the right to reject the appeal if it is not satisfied with the performance of the student or the reason cited for deficiency of the attendance
- 10.4.6 A student earning less than 75% aggregate attendance will be denied promotion. A student who is not promoted on basis of attendance shall be removed from the rolls and shall register for the same semester when opportunity arises. The current semester record of the student is cancelled automatically
- **10.5** A student can forego promotion and opt to repeat the current term on written request. Recommendation of the concerned Faculty Advisor is required for cancellation of promotion. This option shall be exercised before the commencement of the End examinations of the current term.

11.0 Revaluation of End Examination Scripts

- **11.1** Revaluation of End Examination scripts is allowed for theory subjects only by paying requisite fee
- **11.2** A Procedure for Revaluation: The script will be revaluated by an examiner appointed by the Principal. The maximum of revaluation and regular end examination marks will be awarded for that subject
- **11.3** A student can apply for revaluation in a subject only once

12.0 Supplementary End Examinations

- **12.1** Students are eligible to take Supplementary examinations in subjects with fail grade F or X only
- **12.2** Supplementary examinations for even semester subjects will be conducted with regular examinations of odd semester subjects and vice versa
- **12.3** A student will be allowed to improve grade in any theory subject provided she or he has completed coursework of all semesters but before award of provisional/final degree.

13.0 Requirements for Award of M. Tech degree

- **13.1** Time Limit for completion of requirements for award of degree is four calendar years from the date of admission. A student who could not complete all the requirements in this time limit shall forego admission and will be removed from the rolls of the Institute
- **13.2** A student shall be eligible for award of degree provided she or he has:
 - 13.2.1 Registered and successfully completed all required credit-bearing and audit subjects with a total of 68 credits
 - 13.2.2 Secured a CGPA of 5.5 or more
 - 13.2.3 Cleared all dues to the Institute, library and hostel
 - 13.2.4 No disciplinary action is pending against her or him
 - 13.2.5 Satisfied any other stipulation of the affiliating University

13.3 Award of Class: Each student will be given class in degree based on CGPA as given in Table 3

Class of Degree	Range of CGPA
Second Class	>= 5.5 but <6.5
First Class	>= 6.5 but <7.5
First Class with Distinction	>= 7.5

13.4 Consolidated Grade Card and Degree will issued under the seal of affiliating University

14.0 Transitory Regulations

14.1 A student who initially joins the Institute in a previous Regulation and has to rejoin in any semester of the present Regulations, due to any reason, shall be bound by the rules of the current Regulations. Board of Studies of the concerned Major will specify, extra or otherwise, academic coursework to be undertaken by such students who re-join the current Regulations.

COURSE STRUCTURE

Curriculum and Syllabus

L-Theory Lecture T- Tutorial P- Lab Work (Numbers under teaching Scheme indicate contact clock hours)

IM- Internal Marks EM-External Marks CR-credits

S.No.	Core /	Course	Course Name	L	Т	P	IM	EM	CR
	Elective /	Code							
	Audit								
1	Core	1853101	Geometric Modeling	3	0	0	40	60	3
2	Core	1853102	Computer Integrated Manufacturing	3	0	0	40	60	3
		1853103	1.Computer Aided Process Planning						
	Elective1	1853104	2.Concurrent Engineering	3	0	0	40	60	3
3		1853105	3.Quality Engineering & Manufacturing						
4	Elective2	1853106	1.Advanced optimization techniques	3	0	0	40	60	3
		1853107	2.Design For Manufacturing						
		1853108	3.Mechatronics						
5	Core	1800109	Research Methodology & IPR	2	0	0	40	60	2
7	Core	1853110	Lab-I (Computer graphics Lab)	0	0	4	50	50	2
8	Core	1853111	Lab-II	0	0	4	50	50	2
			(CAD Lab)						
6	Audit	One of the	1. English for Research paper writing.						
	Course	Audit	2. Disaster Management						
		courses	3. Sanskrit for Technical Knowledge						
			4. Value Education						
			5. Constitution of India						
			6. Pedagogy Studies						
			7. Stress Management by Yoga						
			8. Personality Development through						
			Life Enlightenment skills.						
			Total	14	0	8	300	400	18

I SEMESTER

	Core /	Course							
S No	Elective /	Code	Course Name	T.	т	Р	IM	EM	CR
5.110.	Audit	Cout	eourse runne	L	-		IIVI	12111	CK
1	Core	1853201	Finite Element Methods	3	0	0	40	60	3
2	Coro	1853201	Pohotias	2	0	0	40	60	2
	Cole	1833202	KODOLICS	3	0	0	40	00	3
		1853203	1.Advances in Manufacturing Technology						
		1853204	2.Artifical Intelligence & Expert Systems						
3	Elective3	1853205	3.Advances Stress Analysis	3	0	0	40	60	3
		1853206	1.Flexible Manufacturing Systems	3	0	0	40	60	3
4	Elective4	1853207	2.Computer Graphics						
		1853208	3.CNC Technology and Programming						
5	Core	1853209	Mini-project with seminar	0	0	4	100		2
7	Core	1853210	Lab-III (CAE Lab)	0	0	4	50	50	2
8	Core	1853211	Lab-IV (CAM Lab)	0	0	4	50	50	2
		One of the	1. English for Research paper writing						
		eight audit	2. Disaster Management						
		courses	3. Sanskrit for Technical Knowledge						
6	Audit		4. Value Education						
			5. Constitution of India						
			6. Pedagogy Studies						
			7. Stress Management by Yoga						
			8. Personality Development through						
			Life Enlightenment skills						
			Total	12	0	12	360	340	18

II SEMESTER

	Core /	Course							
S.No.	Elective /	Code	Course Name	L	Т	Р	IM	EM	CR
	Audit								
		1853301	1.Rapid Prototyping						
1	Elective 5	1853302	2.Automation in Manufacturing	2	0	0	40	60	2
1	Elective 5	1853303	Advanced Tool Design	3	0	U	40	00	3
		1870304	1.Business Analytics						
		1870305	2.Industrial Safety						
		1870306	3.Operations Research						
		1870307	4.Cost Management of Engineering						
2	Open		Projects	3	0	0	40	60	3
	Elective	1870308	5.Composite Materials						
		1870309	6.Waste to energy						
3	Core	1853310	Dissertation Phase-I	0	0	20	100		10
			Total	6	0	20	180	120	16

III SEMESTER

IV SEMESTER

S. No	Core / Elective	Course Code	Course Name	L	Т	Р	IM	EM	CR
1	Major	1853401	Dissertation Phase-II	0	0	32	50	50	16
	Project								
			Total	0	0	32	50	50	16

M.TECH.-I- SEMESTER SYLLABUS

M.Tech-CAD & CAM

Course Title	e GEOME'	TRI	C MC	DEI	LING	M. Tech. CAD/C	AM I Se	em			
Course Code	Category	Hou	rs / V	Veek	Credits	Maximum Marks					
1853101	Professional Core (PCC)	L	Τ	Р	С	Continuous Internal AssessmentEnd ExamTot					
		3	0	0	3	40	60	100			
]	Mid Exam Dur	atio	n: 2 H	Irs		End Exam Durat	tion:3H	[rs			
The math techn spati splir algo	students will le nematical princi niques, study r al data and the ne curves and su rithms and syste	earn ples reprea impa impa rface	of ge sentat act of es, qua	ples omet ion s repr adric eracti	and practi ric modeli schemes f esentation surfaces, a ive 3D sha	ces used in the creation ing; theory and application for curves, surfaces, so on graphics algorithms, and how to design, prographe pe modeling.	i of 3D i ion of m blids, and Topics ram and	models; odeling d other include analyze			
Course Out	tcomes: On suc	cess	ful co	mple	tion of thi	is course, the students v	vill be at	ole to			
CO 1	Student can able	to u	nders	tand t	to equatior	18					
CO 2	Student can able	to u	nders	tand a	applicatior	ns of geometric modeling	g techniq	ues			
CO 3	Student can able	to u	nderst	tand 1	modeling o	complex curves and surfa	aces.				
CO4	mplement the tr	ansfo	ormat	ion aı	nd projecti	on over the geometric me	odel				
CO5	Develop and ma	nipu	late th	e sol	id models	using different modeling	g approac	hes			

<u>UNIT – I</u>

Introduction: Definition, Explicit and implicit equations, parametric equations.

<u>UNIT – II</u>

Cubic Splines: Algebraic and geometric form of cubic spline, tangent vectors, parametric space of a curve, blending functions, four point form, reparametrization, truncating and subdividing of curves.

<u>UNIT – III</u>

Bezier Curves: Bernstein basis, equations of Bezier curves, properties, derivatives. B-Spline Curves: B-Spline basis, equations, knot vectors, properties, and derivatives.

<u>UNIT – IV</u>

Surfaces: Bicubic surfaces, Coons surfaces, Bezier surfaces, B-Spline surfaces, surfaces of revolutions, Sweep surfaces, ruled surfaces, tabulated cylinder, bilinear surfaces, Gaussian curvature.

<u>UNIT – V</u>

Solids: Tricubic solid, Algebraic and geometric form. Solid modeling concepts: Wire frames, Boundary representation, Half space modeling, spatial cell, cell decomposition, classification problem.

Text Books:

1. CAD/CAM by Ibrahim Zeid, Tata McGraw Hill.

- 2. Elements of Computer Graphics by Roger & Adams Tata McGraw Hill.
- 3. Computer Graphics, Steven Harrington, TMH
- 4. Principles of computer Graphics, ShaliniGovil, PHI, 2005, Springer.

5. Computer Graphics and Automation, M.C. Trivedi, Jaico Pub./ PearsonEducation

Reference Books:

1. Geometric Modeling by Micheal E. Mortenson, McGraw Hill Publishers

2. Computer Aided Design and Manufacturing, K.Lalit Narayan, K.MallikarjunaRao, MMM Sarcar, PHI Publisher

3. Mathematical Elements for computer graphics, David. Rodgers, TMH

4. Computer Graphics C version, Donald Hearn and M.PaulineBaker,Pearson/PHI

5. Computer Graphics Principles & Practice, C.Foley, Vndom, Fener, Hughes, 2/e, Pearson Publications.

6. Computer Graphics second edition, Zhigandxiang, Roy Plastock, Schaum" soutlines, TMH.

Course Ti	tle COMPUTE MANU	ER IN FAC	M. Tech. CAI)/CAM I	[Sem				
Course Co	ode Category	Ηοι	ırs /	Week	Credits	Maximur	n Marks	5	
1853102	Professional Core (PCC)	L T P C			С	Continuous Internal	End Exam	Total	
			Assessment						
		3	0	0	3	40	60	100	
	Mid Exam Durati	on: 2	Hrs			End Exam Du	ration :	3Hrs	
 To i To i To mat To the 	 Course objectives: To understand the role of computer in manufacturing To introduce hardware and software components for soft automation. To conduct on automatic data capture systems To provide an in depth understanding of control of manufacturing, automated material handling, storage and retrieval systems To introduce group technology and concurrent engineering and develop skill in the developing automated process plans using variant and generative approaches. To take up case studies on EMS and CIM systems 								
Course Ou	tcomes: On successfu	l con	nplet	tion of	this cour	se, the students v	vill be ab	ole to	
CO 1	At the End of the co automation and NC co	ourse	stud l mac	ent car chines.	n able to	learn fundament	al conce	pts of	
CO 2	Student can able to co	mput	ter co	ontrol i	n NC.				
CO 3	Student can learn GT	& FN	AS C	oncept	s.				
CO4	Students can able to k	now	CAP	P & M	RP Topic	S.			
CO5	Knowledge on Adapti	ve co	ontro	l machi	ining syste	ems is obtained fo	or student	t	

<u>UNIT – I</u>

Introduction: Fundamental concepts in Manufacturing and Automation, Automation Strategies, Economic analysis in production, Fundamentals of CAD / CAM, Product cycle and CAD/CAM Numerical control machines: Introduction, basic components of an NC system, the NC procedure, NC coordinate system, NC motion control system, application of numerical control and Economics of Numerical control.

<u>UNIT – II</u>

NC part programming: Introduction, the Punch tape in NC, Tape code format, Manual part programming. NC programming with manual data input. Computer controls in NC: NC controller"s technology, Computer Numerical Control (CNC) and Direct Numerical control (DNC).

<u>UNIT – III</u>

Group Technology: Part families, Parts classification and coding, Production flow analysis, Composite part concept, Machine cell design and Benefits of GT. Flexible Manufacturing Systems: Components of FMS, FMS Work stations, Material Handling Systems, Computer Control system, FMS layout configurations and Benefits of FMS.

<u>UNIT – IV</u>

Computer aided planning systems: Approaches to Computer aided Process Planning (CAPP), Generative and Retrieval CAPP systems, Benefits of CAPP, Material Requirement Planning (MRP), Mechanism of MRP, Benefits and Capacity Planning.

<u>UNIT – V</u>

Computer integrated manufacturing: Adaptive control machining systems, Adaptive control optimization system, Adaptive control constraint system, Applications to machining processes, Computer process monitoring, Hierarchical structure of computers in manufacturing, and computer process control.

Text Books:

- 1. Automation, Production systems and Computer Integrated Manufacturing Systems, MikelP.Groover, PHI Publishers
- 2. Computer Integrated Manufacturing by Ayres R.U
- 3. Computer Integrated Manufacturing by Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
- 4. Computer Integrated Manufacturing by ALAN WEATHERALL

Reference Books:

- 1. CAD/CAM , MikellP.Grooverand Emory W.Zimmers.Jr. PHI Publishers
- 2. Computer Aided Design and Manufacturing, K.Lalit Narayan, K.MallikarjunaRao, MMM Sarcar, PHI Publishers.
- 3. CAD/CAM/CIM, Radhakrishnan and Subramanian, New Age Publishers
- 4. Computer aided and integrated manufacturing systems by Cornelius T Leondes.

Course T	itle C	OMPUTE P	R AID LANN Electiv	DED P ING ve-I	M. Tech. CAI	D/CAM 1	[Sem		
Course Co	ode Ca	ategory	Hou	rs / W	eek	Credits	Maximur	n Marks	5
1853103	3 Pro Cor	fessional e (PCC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
			3	0	0	3	40	60	100
	Mid Ex	am Durati	ion: 2	Hrs			End Exam Du	ration :	3Hrs
 To understand the concept of process planning and various methods of process planning using computer To understand the geometric model of the component in CAD technology of computer graphics in order to describe part features for process planning. To understand the Steps involved in variant type computer aided process planning and generative type computer aided process planning. Understanding the concept of Group technology to implement variant type computer aided process planning. To understand the principle of NC, CNC, Machining Centre and various methods of part programming. 									
Course Ou	To unders	n successful tand the im	11 com portan	pletion pletion	n of t CAPI	and gro	se, the students v up Technology.	vill be at	ble to
CO 2	To know computer	the basic c aided part	concep program	ts of mmin	NC a g.	nd CNC	machine tool pro	ogrammi	ng and
CO 3	Acquire k Technolog	nowledge a gy FMS and	about d CIM.	advan	ced n	nanufactu	aring systems like	e CAPP,	Group
CO4	Select the	proper cutt	ting too	ol mat	erial	and comp	oonents of jigs and	l fixtures	

<u>UNIT-I</u>

Introduction to process planning, Information required for process planning system, Steps in process planning, Route sheet, Manual approach, Computer aided process planning: Retrieval CAPP system, Generative CAPP system, Hybrid approach, CAPP applications, Facts about CAPP technology, Criteria for selecting a CAPP system, Benefits of CAPP and Limitations of CAPP.

<u>UNIT-II</u>

Introduction to group technology, Benefits of group technology, Part family, Methods of grouping the parts into part family: The visual inspection method, Part classification and coding system, MICLASS classification and coding system, Opitz classification system, Production flow analysis, Composite part, Limitations of group technology, Application of group technology in CAPP, Retrieval CAPP system: Principle, Structure of Retrieval CAPP system, Advantages, Disadvantages, Applications and MIPLAN system.

<u>UNIT – III</u>

Generative CAPP system:Principle of Generative CAPP system, Essential elements in a generative CAPP system, Implementation of generative CAPP systems, Advantages, Disadvantages and Applications Selection of manufacturing sequence: Identifying machinable volumes or pockets required machining process, Setup planning, Attaching pockets to setups, Determining holding method, Alternative sequences, Quantitative

methods for optimal selection and Computer method for sequencing operations for assembly lines

UNIT –IV

Factors affecting selection of manufacturing process, Manufacturing possesses for metals, Machining process, Cutting parameters, Different approaches for solving speed/feed selection problem, Elements of cost in manufacturing operation, Optimization model to predict the optimum speed, Breakeven analysis in selection of process. Flexible Manufacturing System: Components of FMS, FMS equipment & control, Programmable logic controller, Processes interface programming the PLC, Local area network, Automated guided vehicle systems, Automated storage and retrieval system, Operational problem in FMS. Computer Integrated Manufacturing (CIM): Elements of CIM, CIM hierarchy, implementation of processes

UNIT –V

Determination of manufacturing tolerances:Design tolerances, Manufacturing tolerances, Need of tolerances in design and manufacturing, Tolerance allocation ,Tolerance analysis models for assemblies: Worst case, Statistical, Tolerance allocation methods: Allocation by proportional scaling, Allocation by constant precision factor, Tolerance allocation using optimization techniques, Automatic tolerance analysis, Advantages of integrated approach over sequential approach

Text Books:

- 1. Automation, Production systems and Computer Integrated Manufacturing Systems, Mikel P.Groover, PHI Publishers
- 2. Modelling and Design Objects and Processes, Takkai Yagiu
- 3. Computer Aided Engineering, David Bedworth New Product Design and Analysis Ronald Engene Kinetoricz
- 4. CAD/CAM/CIM, Radhakrishnan and Subramanian, New Age Publishers.

Reference Books:

- 1. Applied Information Science , Engineering and technology-Gabriella Bognar and Tibor Toth
- 2. Computer Aided Process and planning H P Wang & JKLI
- 3. Computer Aided Design and Manufacturing, W.Zimmers

4. Anderson M.M. & Hein L. Berlin, "Integrated Product Development", Springer Verlog, 1987.

Course Ti	tle CONCURRE	ENT ENG Elective-I	M. Tech. CAD/CAM I Se		I Sem				
Course Co	de Category	Hours	s / W	eek	Credits	Maximum Marks			
	Professional Co	re L	Т	Р	С	Continuous	End	Total	
1853104	(PCC)					Internal	Exam		
						Assessment			
		3	0	0	3	40	60	100	
	Mid Exam Durati	ion: 2 Hrs	5			End Exam D	ouration	: 3Hrs	
 Course Objectives: The objective of this subject is To study the principles of concurrent engineering and its implementation To familiarize with the basics of concurrent engineering To study the tools and methodologies available in CE To study various approaches to CE To study the other related aspects of CE 									
Course Ou		compieu	on o				viii be at		
CO 1	Student can learn topic	es of Conc	urrer	nt eng	gineering	g and its Goals.			
CO 2	At the end of course student can learn concurrent Engineering Tools and Techniques.								
CO 3	Students learn Roles an	nd Respon	sibili	ties.					
CO4	At the end student can	have know	wled	ge or	n JIT Sys	tems.			

<u>UNIT-I</u>

Introduction to Concurrent Engineering, Definitions, Historical Background, Goals of CE, Need for CE, Development process with CE Role of CAD/CAM in CE and Product life cycle

<u>UNIT-II</u>

Concurrent Engineering Tools & Techniques, Quality function Deployment, Value function analysis, Failure Mode & Effect Analysis, Design for Manufacture & Assembly, Design for X, Taguchi's Robust Design approach ,Pugh process, customer Focused Design, rapid prototyping and simulation.

<u>UNIT-III</u>

Implementing CE in an organization, concurrent engineering teams, their roles and responsibilities, Organizational functions to support CE team environment, Setting Team goals, measuring performance of team & managing a CE Team, Limitations of team.

<u>UNIT-IV</u>

Design for manufacture & Assembly, Design for economics, Design for X, Product Data Management, Agile manufacturing and rapid prototyping& simulation.

<u>UNIT-V</u>

Introduction JIT, Design, development & management for JIT, Implementation of JIT, supply product Life cycle management, Project time management, Techniques of time management and Collaborative product commerce simple case studies in CE

Text Books:

- 1. Thomas A. "Concurrent Engineering", Salomone, Maarcel Dekker Inc.New York, 1995.
- 2. Moustapha .I "Concurrent Engineering in product Design Development" New Age International (p) Ltd., 2003
- 3. Sammy G. Sinha, "Successful implementation of concurrent product & process", Wiley
- 4. Concurrent engineering-Josip Stjepandić, Wim J. C. Verhagen, Nel Wognum

Reference Books:

- 1. Concurrent engineering-John Hartly
- 2. Prasad, "Concurrent Engineering fundamentals Integrated Product Development", Prentice Hall, 1996.
- 3. Design for Manufacturability & Concurrent Engineering- David M. Anderson
- 4. Design for Manufacturability-David M. Anderson

Course Title	QUALITY &MANU El	ENG FAC ective	M. Tech. CAD/CAM I Sem						
Course Code	Category	Maximum Marks							
1853105	Professional Core (PCC)	L	Τ	Р	С	Continuous Internal Assessment	End Exam	Total	
		3	0	0	3	40	60	100	
Mid Exam Duration: 2 HrsEnd Exam Duration : 3H									

Course Objectives

To explain basic quality concepts of Quality engineering and manufacturing, its tools and techniques used in engineering. To familiarize:

- Various theories about quality engineering and manufacturing
- Planning and manufacturing for quality, its tools and techniques
- Supporting tools and techniques for TQM
- Design of Experiments for quality
- Failure patterns and preventive maintenance

Course Outcomes: On successful completion of this course, the students will be able to

CO 1	Student can have knowledge on Quality value and Engineering.
CO 2	At the of topic student know about Tolerance Design.
CO 3	Student have knowledge on orthogonal Arrays.
CO4	Gains knowledge on Various Interpolation of experimental results.

<u>UNIT-I</u>

Quality value and Engineering: An overall quality system, quality engineering in production design, quality engineering in design production processes. Loss function and quality level: Derivation and use of quadratile loss function, economic consequences of tightening tolerances as a means to improve quality, evaluations and types tolerances (N-type, S-type and L-type)

UNIT-II

Tolerance Design and Tolerancing: Functional limits, tolerance design for N-type, L-type and S-type characteristics, tolerance allocation for multiple components. Parameter and tolerance

design: Introduction to parameter design, signal to noise ratios, parameter design strategy, Introduction to tolerance design, tolerance design using the loss function, identification of tolerance design factors.

<u>UNIT-III</u>

Design of Experiments: Introduction, Task aids and Responsibilities for DOE process steps, DOE process steps description. Analysis of variance (ANOVA): no-WAY ANOVA, One-way ANOVA, two-way ANOVA, Critique of F-test, ANOVA for four level factors, multiple level factors. UNIT-IV Orthogonal Arrays: Typical test strategies, better test strategies, efficient test strategies, conducting and analyzing an experiment. Interpolation of experimental results: Interpretation methods, percent contribution, estimating the mean.

UNIT-V

ISO-9000 Quality system, BDRE, 6-sigma, bench marking, quality circles-brain storming fishbone diagram-problem analysis.

Text Books:

- 1. Taguchi techniques for quality engineering, Philip J.Ross, McGraw Hill Intl, 2nd Edition,1995. 2. Quality Engineering Handbook by (Author), <u>R.W. Berger</u> (Author)
- 2. Quality Engineering by Su Chao-Ton
- 3. Quality Management And Qualification Needs 1 by Johannes K

Reference Books:

- 1. Quality Engineering in Production systems, G.Taguchi, A.Elasayed et al/Mc.GrawHillIntl. Edition, 1989.
- 2. Taguchi methods explained: Practical steps to Robust Design, Papan P. Bagchi, Prentice Hall Ind. Pvt. Ltd., New Delhi
- 3. a textbook of production technology: manufacturing processes author: <u>p c sharma</u>
- 4. Quality Management In Plastics Processing by Robin Kent

Course Title	ADVANCE	PTIMI	M. Tech. CAD/CAM I Sem					
	TE	IQUE						
]	ve-II						
Course Code	Category	Hou	ırs / W	eek	Credits	Maximu	m Mark	S
	Professional	L	Т	Р	С	Continuous	End	Total
1853106	Core (PCC)					Internal	Exam	
						Assessment		
		3	0	0	3	40	60	100
Mid Exam Duration: 2 Hrs						End Exam Du	uration :	3Hrs

Course Objectives: The objective of this subject is

- To understand and apply operation research techniques to design and production problems
- To understand concept of linear programming techniques and obtaining optimal solution using various linear programming techniques
- To understand Assignment Problem in order to solve process planning problem To understand various nonlinear programming techniques to solve nonlinear programming problems with constraints and without constraints
- To learn search techniques to solve nonlinear programming problems with constrains and without constraints.
- To understand genetic algorithm in order to solve nonlinear programming and travelling salesman problem.
- To learn genetic programming in order to generate programs Applying above techniques to solve design and manufacturing problems.

Course Ou	Course Outcomes: On successful completion of this course, the students will be able to							
CO 1	Illustration of different approaches for optimization.							
CO 2	Understand about the application optimization in Engineering							
CO 3	Learning of different optimization techniques.							
CO4	Knowledge of different practical applications of optimization							

<u>UNIT I</u>

Linear programming: Two-phase simplex method, Big-M method, Duality, Applications of linear programming to design and manufacturing. Assignment problem: Hungarian algorithm,

Degeneracy, Applications, Unbalanced problems, Traveling salesman problem.

<u>UNIT II</u>

Nonlinear programming: Nonlinear programming formulation, Cases of nonlinear programming problem, Extreme points, Single variable and multi variable optimization without constraints, Nonlinear programming with constraints: Graphical solution, Lagrange multiplier method and Kuhn-Tucker conditions

<u>UNIT III</u>

Integer linear programming: Definition, Integer linear programming techniques, Branch and Bound algorithm for obtaining optimal solution and Gomory cutting plane algorithm

<u>UNIT IV</u>

Genetic algorithm (GA) : Differences and similarities between conventional and evolutionary algorithms, Working principle, Reproduction, Crossover, mutation,

Termination criteria, Application of genetic algorithm for solving unconstrained nonlinear programming problem and Traveling salesman problem, Draw backs of GA Genetic Programming (GP): Principles of genetic programming, Terminal sets, Functional sets, Differences between GA & GP, Random population generation, Solving differential equations using GP.

<u>UNIT V</u>

Applications of Optimization in Design and Manufacturing systems: Some typical applications like optimization of path synthesis of a four-bar mechanism, Minimization of weight of a cantilever beam, Optimization of springs and gears, General optimization model of a machining process, Optimization of arc welding parameters, and General procedure in optimizing machining operations sequence.

Text Books:

- 1. Optimization Techniques And Applications With Examples by Yang, Wiley
- 2. Optimal design JasbirArora, McGraw Hill (International) Publishers
- 3. Operations research, K. Rajagopal, PHI
- 4. Engineering Optimization S.S.Rao, New Age Publishers

Reference Books:

- 1. Linear and Optimization -Prasad, Gerard Sierksma
- 2. Operation research -Gang yu
- 3. Numerical Optimization -Jorg Nocedal
- 4. Industrial Engineering-Fethi Calsir& Emire Cavican

Course Title	DESIGN FOR M Elec	M. Tech. CA	AD/CAN	A I Sem					
Course Code	Category	Hours	s / W	eek	Credits	Maximum Marks			
	Professional Core	L	Т	Р	С	Continuous	End	Total	
1853107	(PCC)					Internal	Exam		
						Assessment			
		3	0	0	3	40	60	100	
	Mid Exam Duration	: 2 Hrs				End Exam l	Duration	n : 3Hrs	
 assembly to fam DFM approac Selective asse Metal casting Form design c 	 Course Objectives: To enable the students to understand the Design for manufacture and assembly to familiarize DFM approach and Processes Selective assembly& Thermal stress in weld joints Metal casting joining Form design of castings and Extrusion & sheet metal work 								
Course Outcom	es: On successful con	npletion	n of t	his c	ourse, t	he students w	vill be al	ole to	
CO 1	Knowledge on rules f	for man	ufact	urab	ility Basi	c principles.			
CO 2	Over view of various machining Process.								
CO 3	Knowledge on metal Castings.								
CO 4	Design of weldments.								
CO 5	Various plastic design	n procee	lures	•					

<u>UNIT I</u>

Introduction: Design philosophy, steps in design process, general design rules for manufacturability, and basic principles of designing for economical production and creativity in design.

Materials: Selection of materials for design, developments in material technology,criteria for material selection, material selection interrelationship with process selection and process selection charts.

<u>UNIT II</u>

Machining processes: Overview of various machining processes, general design rules for machining, dimensional tolerance and surface roughness, Design for machining, ease redesigning of components for machining ease with suitable examples and General design recommendations for machined parts

<u>UNIT III</u>

Metal casting: Appraisal of various casting processes, selection of casting process, general design considerations for casting, casting tolerance, use of solidification, simulation in casting design and product design rules for sand casting.

<u>UNIT IV</u>

Metal joining: Appraisal of various welding processes, factors in design of weldments, general design guidelines, pre and post treatment of welds, effects of thermal stresses in weld joints and design of brazed joints.

Forging: Design factors for forging, closed die forging design, parting lines of dies, drop forging die design and general design recommendations.

<u>UNIT – V</u>

Extrusion & Sheet metal work: Design guide lines extruded sections, design principles for punching, blanking, bending, deep drawing, Keeler Goodman forging line diagram and component design for blanking.

Plastics: Visco elastic and creep behavior in plastics-design guidelines for plastic components-design considerations for injection moulding, design guidelines for machining andjoining of plastics.

Text Books:

- 1. Design for manufacture, John cobert, Adisson Wesley. 1995 Design for Manufacture by Boothroyd,
- 2. Design for Manufacturing: A Structured Approach-by Corrado Poli BS MS Ph.D Ohio State
- 3. 4.Design for Manufacturability & Yield for Nano-Scale CmosChiang 2009 Edition by Chiang Charles , Springer

Reference Books:

- 1. ASM Hand book Vol.20
- 2. Design for Manufacturability (Hardcover, Balasinski, Artur)
- 3. Design for Manufacturing-c.poli
- 4. Product Technology:Manufacturing Processes,Technology and Automation by R.K Jain pustakkosh.com

Course T	itle	MECH	IATR(ective-	M. Tech. CAD/CAM		I I Sem			
Course C	ode	Category	Hour	s / V	Maxim	um Mar	ks		
185310	8	Professional Core (PCC)	L T P C		Continuous Internal	End Exam	Total		
							Assessment		
			3	0	0	3	40	60	100
	Mid Exam Duration: 2 Hrs End Exam Duration : 3Hrs								: 3Hrs
 Course Objectives: To study about various, sensors, transducers, microprocessors and To study the Actuators and drive systems, used in mechanical engineering To study how motion controls can be used to do simple applications in mechanical engineering To study about Architecture of intelligent machines and sensors its applications 									
Course Outcomes: On successful completion of this course, the students will be able to									
CO 1	At the of the course student can learn about various Actuators and drive systems								
CO 2	Knov	wledge fuzzy logic							
CO 3	Stude	ent learn Various An	alog a	nd D	igital	Sensors			

<u>UNIT I</u>

Introduction: Definition of Mechatronic products, design considerations and Tradeoffs, Overview of Mechtronic products. Intelligent machine Vs Automatic machine economic and social justification, **Actuators and drive systems:** Mechanical, Electrical, hydraulic drive systems, Characteristics of mechanical, Electrical, Hydraulic and pneumatic actuators and their limitations.

<u>UNIT II</u>

Motion Control: Control parameters and system objectives, Mechanical Configurations, Motion Control algorithms: Significance of feed forward control loops, shortfalls,fundamentals concepts of adaptive and fuzzy – control. Fuzzy logic compensatory control of transformation and deformation non- linearity's.

<u>UNIT III</u>

Architecture of intelligent machines: Introduction to Microprocessor and programmable logic controls and identification of systems. System design classification, Motion control aspects in design, Manufacturing data bases: Data base management system, CAD/CAM data bases, graphic data base, introduction to object oriented concepts, objects oriented model language interface.

<u>UNIT IV</u>

Sensor interfacing: Analog and digital sensors for motion measurement, Digital transducers, human-Machine and machine- Machine inter facing devices and strategy.

<u>UNIT V</u>

Machine vision: Feature and pattern recognition methods, concepts of perception and cognition in decision-making.

Text Books:

- 1. "Designing intelligent machines", open university, London.MichelB.Histand and davidG.
- 2. Alciatore.
- 3. Introduction to Mechatronics and Measurement systems, Tata McGraw Hill.
- 4. C.W.desilva, "Control sensors and actuators, Prentice Hall.
- Mechatronics: Electronic Control Systems in Mechanical Engineering Book by W. Bolton

Reference Books:

- 1. Introduction to mechatronics and measurement systems Book by David Alciatore
- 2. Mechatronics : Fundamentals and Applications -Charles
- 3. An Introduction to Mechatronics -Robert H Bishop
- 4. Mechotronics System Design Devdas Shetty

Course Tit	le RESEARCH METH	RESEARCH METHODOLOGY AND IPR					M. Tech. CAD/CAM I Sem		
Course Co	de Category	Hou	rs / Y	Week	Credits	Maxim	um Mar	ks	
1853109	Professional Core (PCC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total	
		2	0	0	2	40	60	100	
	Mid Exam Duration	n: 2 Hr	S			End Exam Duration : 3Hrs			
 Course Objectives: To study about various, sensors, transducers, microprocessors and To study the Actuators and drive systems, used in mechanical engineering To study how motion controls can be used to do simple applications in mechanical engineering To study about Architecture of intelligent machines and sensors its applications 									
Course Ou	tcomes: On successful co	ompleti	on o	f this	course, 1	the students v	vill be ab	ole to	
CO 1	Understand research pro	olem for	rmula	ation.					
CO 2	Analyze research related	in form	atior	1					
CO 3	Follow research ethics								
CO 4	Understand that today's world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.								
CO 5	Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering Understand that IPR protection provides an incentive to inventors for further in particular.								
CO6	Understand that IPR pro Research work and invest better products, and in benefits.	tection stment i turn	prov in R bring	ides a & D, s abo	n incent which le out, eco	ive to inventor ads to creation nomic growth	rs for fur n of new n and so	ther and ocial	

<u>UNIT I</u>

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem.

Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

<u>UNIT II</u>

Effective literature studies approaches, analysis Plagiarism, Research ethics,

<u>UNIT III</u>

Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee.
Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

<u>UNIT V</u>

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

Text Books:

- 1. .Stuart Melville and Wayne Goddard, "Research methodology: an introduction for
- 2. science & engineering students""
- 3. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 4. The Craft of Research, Third Edition <u>Gregory G. Colomb</u>, <u>Joseph M. Williams</u>, <u>Wayne</u> <u>C. Booth</u>
- 5. Qualitative Research by Sharan B. MerriamElizabeth J. Tisdell

- 1. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches J. David Creswell, John W. Creswell
- 2. Research Methods in Education Book by Keith Morrison, Lawrence Manion, and Louis Cohen
- 3. 3. Handbook of Qualitative Research Norman K. Denzin, Yvonna S. Lincoln
- 4. .RanjitKumar, 2nd Edition, "Research Methodology: A Step by Step Guide

Course 7	Fitle	COMPUTER	GRA	PHI	CS L	AB	M. Tech. CAD/CAM I Sem			
Course (Code	Category	Hours / Week Credit			Credits	Maximum Marks			
185311	10	Professional Core (PCC)	L	Τ	Р	С	Continuous Internal Assessment	End Exam	Total	
			0	0	4	2	50	50	100	
Mid Exam Duration: 2 Hrs End Exam Duration : 3Hrs										
 Understa Learn alg Learn the 	and the n gorithmic represe	eed of developing g c development of gr ntation and transfor	raphics aphics matior	s app prim of g	licati itive raph	ion s like: lin ical imag	ne, circle, pol ges and picture	ygon etc es.		
Course Ou	comes:	On succession com	pietioi			tourse, u	le students v	viii be at	ne to	
CO 1	Draw C	beometric primitives	s using	Ope	nGĹ					
CO 2	Execut	e scan line polygon	filling	using	g Op	enGL				
CO 3	Implen	nent basic transform	ations	on ol	ojects	s using C	penGL			
CO 4	Implen	nent clipping algorit	hm on	lines	usin	g OpenC	ίL			

List of Experiments

- 1) C Program me for Generation of Line
- 2) C Program me for Generation of Circle using DDA Algorithm
- 3) C Program me for Generation of Entities using Ellipse
- 4) C Program me for Generation of Bezier Curve

Any Four Experiments in CAD Software Covering 2D Modeling ,Boolean Operations ,Add,

Subtract, Pan Zoom & Rotate ,Trim and other Draw & Editing commands

C-Language, Any Cad Software

4) C Program me for Generation of Bezier Curve Any Four Experiments in CAD Software

Covering 2D Modeling ,Boolean Operations ,Add, Subtract, Pan Zoom & Rotate ,Trim and other Draw & Editing commands

Course T	itle	CA	D LA	B			M. Tech. CAD/CAM I Sem			
Course C	ode	Category	Hour	s / W	eek	Credits	Maxim	um Mai	ks	
185311	1	Professional Core (PCC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total	
			0	0	4	2	50	50	100	
Mid Exam Duration: 2 Hrs End Exam Duration : 3E						n : 3Hrs				
 Course Objectives: To study about various, sensors, transducers, microprocessors and This Lab introduces students to software and equipments associated with CAD/CAM This Lab helps students to build their basic concepts about CAD/CAM This Lab helps students to learn the following using different CNC Machine's Basic working principal. Axis movements. G& M code Development. Programming and Test run of Programmed part. 										
	Desi	gn and draft the produ	ict dra	wing	s.					
CO 1	A 1		1					4 1 - ¹ - ¹	. 1	
CO 2	Anal relia	ble products	ontrol	the d	esigr	i paramete	rs to manufac	ture higi	nly	
CO 3	Iden adva	Identify potential changes in design as they are altered and influenced by advancements in manufacturing processes.								
CO 4	Und	erstand the construction	onal fe	ature	s of a	a CNC ma	chine			
CO 5	Writ	e a manual part progr	ammin	ng to	man	ufacture a	product on Cl	NC Macl	nines.	

Any Four Experiments Covering 3D Modeling Cad Software, Revolve, Box, Loft, sweep ,Etc..

Any Two Experiments Covering 3D Modeling, Extrude ,Delete segment, pattern ,etc..

Any Two Experiments Covering Assembly Commands For various components.. Any Software related to CAD-Autocad, Inventory, Creo-4.0, Catia, Etc...

Course Title	FINITE EL	NT N	M. Tech. CA	D/CAM	I II Sem			
Course Code	Category	Hours / Week			Credits	Maximum Marks		
1853201	Professional Core (PCC)	L	Τ	Р	С	Continuous Internal Assessment	End Exam	Total
		3	0	0	3	40	60	100
Mid Exam Duration: 2Hrs						End Exam I	Duration	: 3Hrs

Course Objectives: The objectives of this course is to teach the fundamentals of Finite Element Methods with emphasis on the underlying theory, assumptions and modeling issues, revision of matrix algebra, introduction to formulating system equations for structural problems, concept of shape functions, properties and usage of linear, quadratic and cubic shape functions. The students will learn the fundamentals of Finite Element Methods including discrete system analysis,

Course Ou	stcomes: On successful completion of this course, the students will be able to
CO 1	students are able to know introductory basic principles and approaches for solving FEM problems in different fields.
CO 2	students are able to formulate FEM model for simple problems
CO 3	students are able to write interpolation functions to higher order isoparametric elements.
CO 4	students are able to derive element matrices for applying the principles to find stresses in beamsand trusses and temperature distribution in composite walls

<u>UNIT I</u>

Formulation Techniques: Methodology, Engineering problems and governing differential equations, finite elements., variational methods-potential energy method, Raleigh Ritz method, strong and weak forms, Galerkin and weighted residual methods, calculus of variations, Essential and natural boundary conditions.

<u>UNIT II</u>

One-dimensional finite element methods: Bar elements, temperature effects. Element matrices, Assembling of global stiffness matrix, Application of boundary conditions, Elimination and penalty approaches, solution for displacements, reaction, stresses, temperature effects, Quadratic Element, Heat transfer problems: One-dimensional, conduction and convection Problems. Examples: one dimensional fin.

<u>UNIT III</u>

Trusses: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses, and temperature effects.

Beams and Frames: Element matrices, assembling of global stiffness matrix, solution for **displacments, reactions, stresses**

<u>UNIT IV</u>

Two dimensional problems: CST, four noded and eight noded rectangular elements, **Axisymmetric Problems:** Axisymmetric formulations, Element matrices boundaryconditions. **Heat Transfer problems:** Conduction and convection, examples: two-dimensional fin.

Isoparametric formulation: Concepts, sub parametric, super parametric elements, numerical integration. Finite elements in Structural Dynamics: Dynamic equations, Eigenvalue problems, and their solution methods, simple problems.

Convergence: Requirements for convergence, h-refinement and p-refinement, Pascal"s triangle

Text Books:

- 1. Finite Element Analysis in Engineering, S.Md. Jalaludeen, Anuradha Publishers
- 2. Introduction to Finite Elements in Engineering, Chandraputla, a and Belegundu, PHI.
- 3.Applied finite elements by G. Ramamurthy, Osmania university, I K International Publishing House Pvt. Ltd
- 4. The Finite Element Method Basic Concepts And Applications With Matlab Maple And Comsol 3Rd Edition by Darrell W Pepper and Juan C Heinrich, Taylor and Francis

- 1. An Introduction to Finite Element Method, JN Reddy, TMH
- 2. Finite Element Method, its basics and fundamentals, O.C.Zienkiewicz, Elsevier
- 3. Fundamentals of Finite element analysis ,David V Hutton ,TMH
- 4. Finite Element Analysis, G. Laksminarasaiah, B.S.Publ.
- 5. Textbook of Finite Element Analysis by P. Seshu PHI Publishers
- 6. Finite Element Methods in Engineering, SS Rao, Pergamon,

Course Tit	le ROB	OTI	CS			M. Tech. CA	AD/CAN	1 II Sem
Course Coo	le Category	Hou	Hours / Week Credits			Maxin	um Ma	rks
1853202	Professional Core (PCC)	L	T	P	С	Continuous Internal Assessment	End Exam	Total
		3	0	0	3	40	60	100
Mid Exam Duration: 2HrsEnd Exam Duration : 3Hrs							n : 3Hrs	
Course Ob of sensors u programmi	jectives: To make the studuted in robotics. The diffenge.	dent to rent s	o und ensin	erstan g vari	d, The ba ables and	asics and the la l Robot vision	atest tech system I	inology Robot
Course Out	comes: On successful co	mplet	tion o	f this	course, 1	the students w	vill be ab	ole to
CO 1	Student should come to) knov	w the	vario	ous com	ponents in the	e anatom	ny of
	robot. By knowing this structure.	the st	udent	may	apply in	the design of	f new ro	botic
CO 2	Students are able to und	erstan	d the	appli	cations of	of various type	es of end	effectors,
	and sensor devices. Student should also learn about the homogeneous							
	transformations and its a	pplica	ations	•				
CO 3	CO3.students are able t	o unc	lersta	nd ro	bot prog	ramming lang	guages w	hich may
000	adopt in different application	ations	of rol	bot.				

Fundamentals of Robots: Introduction, definition of robot, classification of robots, History of robotics, robot components, degree of freedom, robot joints, robot coordinates, reference frames, programming modes, robot characteristics, robot work space, robot languages, advantages, disadvantages and applications of robots.

Matrix transformations: Introduction, robots as a mechanisms, matrix representationrepresentation of a point in a space, representation of a vector in space, representation of a frame at the origin of a reference frame, representation of a frame in a reference frame, representation of a rigid body.

<u>UNIT II</u>

Robot kinematics: Forward and inverse kinematics of robots-forward and inverse kinematicequations for position, forward and inverse kinematic equations for orientation, forward and inverse kinematic equations for position and orientation ,Denavit - Hartenberg(DH)representation of forward kinematic equations of robots.

<u>UNIT III</u>

Differential motions and Velocities:

Introduction, differential relationship, Jacobian, differential motions of a frame-translations, rotation, rotating about a general axis, differential transformations of a frame, Differential changes between frames, differential motions of a robot and its hand frame, calculation of Jacobian, relation between Jacobian and the differential operator, Inverse Jacobian.

Dynamic analysis and forces: Introduction, Lagrangian mechanics, Effective moments of inertia, dynamic equations for multi-degree of freedom robots-kinetic energy, potential energy, the Lagrangian, robot^{**}s equations of motion, static force analysis of robots.

Trajectory planning: Introduction, path Vs trajectory, basics of trajectory planning, joint space trajectory planning-third order polynomial trajectory planning, fifth order polynomial trajectory planning, Cartesian-space trajectories.

<u>UNIT V</u>

Robot Actuators: Introduction, characteristics of Actuating systems-weight, power to weight ratio, operating pressure, stiffness Vs compliance, comparison of actuating systems, hydraulic devices, pneumatic devices.

Robot sensors: Introduction, sensor characteristics,Position sensors-potentiometers, encoders, LVDT, Resolvers, time of travel displacement sensor, Velocity sensors-Encoders, Tachometers, differentiation of position signal.

Text Books:

- 1) Automation, Production systems and CIM, M.P.Groover, Pearson Edu.
- 2) Industrial Robotics, M.P. Groover, TMH.
- 3) Robotics, fundamental Concepts and analysis, AshitaveGhosal, Oxford Press, 2006
- 4) Ulrich Rembold, Robot Technology and Applications
- 5) Robotics and Control, Mittal RK & Nagrath IJ, TMH.

Reference Books:

1. Robotics, Fu KS, McGraw Hill.

2. An Introduction to Robot Technology, P. Coiffet and M.Chaironze, Kogam Page Ltd. 1983 London.

3. Robotics Engineering, Richard D.Klafter, Prentice Hall

4. . A text book of Robotics by Saeed B. Niku, Pearson Publisher

Course Title	ADVANCESI TEC F	N MA CHN(Electiv	NUF DLO(ve-III	M. Tech. CA	AD/CAM	II Sem		
Course Code	Category	Hours / Week			Credits	Maximum Marks		
1853203	Professional Core (PCC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
		3	0	0	3	40	60	100
Mid Exam Duration: 2Hrs						End Exam l	Duration	: 3Hrs

Course objective:

- To develop the ability to understand the advanced manufacturing techniques evolved in manufacturing scenario.
- To study the Advanced techniques in Welding processes
- To study the Surface processing operations
- To study the Different types of unconventional Machining Methods
- To study about Rapid prototyping and Nano Technology

Course Outcomes: On successful completion of this course, the students will be able to						
CO 1	At the end of course student can able to know Welding Automation and Testing procedures for welds					
CO 2	Knowledge on organic coatings and surface processing operations					
CO 3	Gains knowledge on unconventional machining methods					
CO 4	Working principles of various RP techniques					

<u>UNIT I</u>

Welding Processes: Fusion and Solid state welding process, Automation in Welding, Design aspects of welds, Nondestructive testing of welds, Residual stresses and distortion in weldments.

<u>UNIT II</u>

Surface Processing Operations: Plating and Related Processes, Conversion Coatings, Physical Vapor Deposition, Chemical Vapor Deposition, Organic Coatings, Porcelain Enameling and other Ceramic coatings, Thermal and Mechanical Coating Processes.

Un-conventional Machining Methods-I: Abrasive jet machining:Elements of the process, applications and limitations, recent developments. Ultrasonic machining: Elements of the process, machining parameters, applications and limitations. Un-conventional Machining Methods-II: Metal removal rate in ECM, Tool design, Surface finish and accuracy economics aspects of ECM Wire EDM Process: General Principle and applications of Wire EDM.

UNIT IV

Un-conventional Machining Methods-III: Electron Beam Machining: Generation and control of electron beam for machining, theory of electron beam machining, principle, advantages and limitations, comparison of thermal and non thermalprocesses. Plasma Arc Machining: Principle, machining parameters, effect of machining parameters on surface finish and metal removal rate, applications, limitations Laser Beam Machining: Principle, effect of machining parameters on surface finish, applications, and limitations.

<u>UNIT V</u>

Rapid Prototyping: Working principle, methods-Steriolithography, Laser sintering, Fused deposition method, applications and limitations. Nano Technology: Nano milling processes, wet milling, dry milling, nano materials, fabrication of nano tubes, advantages of nano tubes, mechanical properties.

Text Books:

- 1. Manufacturing Technology, Vol I P.N. Rao, Tata Mc Graw Hill, 4th Edition, 2013
- 2. Manufacturing Technology, Kalpakjain, Pearson education, 4th Edition, 2002
- 3. Manufacturing Management, Priciples and Concepts, P. Gibson, G.Greenhaigh & R. Kerr
- 4. Manufacturing Technology by Helmi A. Youssef

- 1. Production Technology, K.L Narayana, I.K. International Pub, 3rd Edition, 2013
- 2. Manufacturing Process Vol. I, H.S.Shah Pearson, 2013,
- 3. Principles of Metal Castings, Rosenthal, Tata McGraw Hill ,2nd Edition,2001
- 4. Advance in Production Technology by Christian Brecher

Course Title	ARTIFICIAL IN EXPERT Elect	TEI SYS ive-I	E &	M. Tech. CA	AD/CAN	/I II Sem			
Course Code	Category	Hours / Week Credits			Credits	Maximum Marks			
1853204	Professional Core (PCC)	L	Τ	Р	С	Continuous Internal Assessment	End Exam	Total	
		3	0	0	3	40	60	100	
	Mid Exam Duration	: 2H	rs			End Exam	Duratio	n : 3Hrs	
 To da artifi To da engir To da of the or browner of the result of the res	 Course objective: To develop informed opinions about the present and past opinion leaders in the artificial intelligence debate. To develop a simple, informal expert system by performing an effort of knowledge engineering of a real, human expert. To develop a series of Web pages that will serve as a current "state of the art" review of the various AI application areas, areas which may be suggested by the instructor or brought to the course by participants. To experience some actual hands-on demonstration software while accomplishing the review of current applications areas in AI. Examples of such areas might include natural language processing (NLP), genetic algorithms or artificial life environments , neural nets or massively parallel computing environments, data mining, fuzzy logic, machine vision or speech, robotics, intelligent tutoring systems, etc. 								
Course Outco	omes: On successful con	nplet	tion o	f this	course,	the students v	vill be al	ole to	
CO 1	Students Gains knowledg intelligence Characteristi	ge in c and	probl d cont	ems in trol St	n product rategies.	ion systems ar	nd Artifio	cial	
CO 2	Know ledge on End analy	ysis S	Searcl	n Tech	nniques I	Logic Program	ming.		
CO 3	Representations and Map	ping	, App	roach	es Etc.				
CO 4	Student gains knowledge	in st	atisti	cal and	d probab	ilistic Reasoni	ng.		
CO 5	Types of learning, Gentic	calgo	rthim	s etc.					

Artificial Intelligence : Introduction, definition, underlying assumption, Important of Al, Al & related fields State space representation, defining a problem, production systems and its characteristic, search and control strategies –Introduction, preliminary concepts, examples of Search, problems.

<u>UNIT II</u>

Uniformed or preliminary Concept: Examples of search problems, Uniformed or Blind Search, Informed Search, Or Graphs, Heuristic Search techniques- Generate and Test, Hill climbing, Bestfirst search, Problem reduction, Constraint satisfaction, Means- Ends Analysis.

<u>UNIT III</u>

Knowledge Representation Issues: Representations and Mapping, Approaches, Issues in Kr, Types of knowledge procedural Vs Declarative, Logic programming, Forward Vs Backward reasoning, Matching, Non monotonic reasoning and it logic. Use of Predicate Logic: Representing simple facts, Instance and is a relationships, Syntax and Semantics for Propositional logic, FOPL, and properties of Wffs, conversion to casual form, Resolution, Natural deduction.

Statistical and Probabilistic Reasoning: Symbolic reasoning under uncertainly, Probability and Bayes theorem, Certainty factors and Rule based systems, Bayesian Networks, Dempster-Shafer Theory, Fuzzy Logic Expert Systems: Introduction, Structure and uses, Representing and using domain knowledge, Expert System Shells. Pattern recognition, introduction, Recognition and classification process, learning classification patterns, recognizing and understanding speech.

<u>UNIT V</u>

Introduction to Knowledge Acquisition Types of learning, General learning model, and performance measures. Typical Expert Systems: MYCIN, Variants of MYCIN, PROSPECTOR DENDRAL, PRUFFetc. Introduction to Machine Learning: Perceptions, Checker Playing examples, Learning, Automata, Genetic Algorithms, Intelligent Editors.

Text Books:

- 1) "Artificial Intelligence", Elaine Rich & Kevin Knight, M/H 1983
- 2) "Artificial Intelligence in Business", WendryB.Ranch, Science & Industry –Vol– IIapplication, Ph 1985.
- 3) Artificial Intelligence: A Modern Approach 3rd Edition by by Stuart J. Russell and Peter Norvig
- 4) Paradigms of Artificial Intelligence Programming: Case Studies in Common Lisp 1st Editionby <u>Peter No</u>rving

- 1) "A Guide to Expert System" Waterman, D.A., Addison,- Wesley inc. 1986.
- 2) "Building expert system" Hayes, Roth, Waterman, D.A (ed), AW 1983.
- 3) "Designing Expert System", S.M. and Kulliknowske
- 4) Artificial Intelligence And Emerging Technologies In International Relations Hardcover Import, 14 June 2021 by <u>Bhaso Ndzendze</u> (Author), <u>Tshilidzi Marwala</u>

Course Titl	ADVANCED ST	ADVANCED STRESS ANALYSIS M Tech CAD/CAM II Sem						
	Elect	tive-I	II		515			I II Sem
Course Cod	e Category	Hou	Hours / Week Credits			Maximum Marks		
1853205	Professional Core (PCC)	L T P C		С	Continuous Internal	End Exam	Total	
						Assessment		
		3	0	0	3	40	60	100
Mid Exam Duration: 2HrsEnd Exam Duration : 3Hrs								
Analysis of process. Thi expose stuc conditions. analysis.	stresses in a componen s requires understanding lents to such theories w This includes, theories of	t sub and k hile f elast	jecteo mow empl icity	l to l ledge nasizin theo	oading is of variou ng on th ry of pla	s an inevitable as theories. The neir application sticity and expo	part of course a s under erimenta	design aims to stated l stress
Course Outo	comes: On successful co	mple	tion o	of this	s course,	the students w	vill be ab	ole to
CO 1	CO 1 Students will understand the tonsorial approach of continuum mechanics and comprehend modern research material.							
CO 2	CO 2 Student will learn basic field equations such as equilibrium equations, compatibility and constitutive relationship.							
<u> </u>	Students will be able to	appl	v bas	ic fie	ld equati	ons to torsion.	bending	and two

CO 3Students will be able to apply case field equations to torsion, bending and two
dimensional elasticity problems, and energy methods.CO 4Students will be able to solve problems in unsymmetrical bending and shear
center, contact stresses and pressurized cylinders and rotating discs.

<u>UNIT I</u>

Theory of Elasticity Analysis of stress, Analysis of stain, Elasticity problems in two dimension and three dimensions, Mohr"s circle for three dimensional stresses. Stress tensor, Air"s stress function in rectangular and polar coordinates.

<u>UNIT II</u>

Energy Methods Energy method for analysis of stress, strain and deflection The three theorem's -theorem of virtual work, theorem of least work, Castiglioni's theorem, Rayleigh Ritz method, Galekin's method, Elastic behavior of anisotropic materials like fiber reinforced composites.

UNIT III

Theory of Torsion Torsion of prismatic bars of solid section and thin walled section. Analogies for torsion, membrane analogy, fluid flow analogy and electrical analogy. Torsion of conical shaft, bar of variable diameter, thin walled members of open cross section in which some sections are prevented from warping, Torsion of noncircularshaft. .Unsymmetrical Bending and Shear Centre Concept of shear center in symmetrical and unsymmetrical bending, stress and deflections in beams subjected to unsymmetrical bending, shear center for thin wall beam cross section, open section with one axis of symmetry, general open section, and closed section.

UNIT IV

Pressurized Cylinders and Rotating Disks Governing equations, stress in thick walled cylinder under internal and external pressure, shrink fit compound cylinders, stresses in rotating flat solid disk, flat disk with central hole, disk with variable thickness, disk of uniform strength, Plastic action in thick walled cylinders and rotating disc.

Contact stresses Geometry of contact surfaces, method of computing contact stresses and deflection of bodies in point contact, stress for two bodies in line contact with load normal to contact area and load normal and tangent to contact area. Introduction to Analysis of low speed impact.

Text Books:

- 1. Dally, J. W. and W.F. Riley, Experimental Stress Analysis, McGraw Hill International, Third Edition, 1991
- 2. Theory of Elasticity Timoshenko and Goodier, McGrawHill
- 3. Advanced Strength of Materials, Vol. 1,2 Timoshenko,CBS
- 4. Advanced Strength of Materials DenHarteg.

Reference Books:

- 1. Sadd, Martin H., Elasticity: Theory, applications and Numeric, Academic Press 05
- 2. Boresi, A.P. and K. P. Chong, Elasticity in Engineering Mechanics, Second Edition, John Wiley & Sons,
- 3. Budynas, R. G. Advance strength and Applied Stress Analysis, Second Edition, WCB/ McGraw Hill1999

4. Advanced Strength and Applied Stress Analysis (Mcgraw-Hill Series MechanicalEngineering) by Richard G. Budynas

Course T	itle	FLEXIBLE N	/AN YSTE	M. Tech. CAD/CAM II Sem					
		E							
Course C	ode	Category	Hours / Week Credits			Maximum Marks			
185320	6	Professional Core (PCC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
			3	0	0	3	40	60	100
Mid Exam Duration: 2HrsEnd Exam Duration : 3Hrs						n : 3Hrs			
Cou To abo	urse Ol unders ut the d)jectives : tand the design, pla lifferent tools and t	anning echni	g and ques f	opera for an	tional con alyzing th	cepts of FMS ne same	and lear	'n
Course Out	comes	: On successful co	mplet	tion o	f this	course, t	he students w	vill be ab	ole to
CO 1	Under	stand FMS and job	-shop	and 1	nass p	production	n manufacturi	ng systei	ns.
CO 2	Know	ledge of concept a	nd des	sign o	f flexi	ble manu	facturing cells	s.	
CO 3	Explo	re processing sta	tions	and	mate	rial hand	dling system	s used	in FMS

CO 5 Design and analyze FMS using analytical techniques.

tool management and breakdown in a typical FMS.

<u>UNIT I</u>

CO 4

environment.

Understanding of FMS: Classifications of Manufacturing Systems, Definition, Objective and Need, Components, Merits, Demerits and Applications of FMS. Design of FMS: Performance Evaluation, Analytical models of FMS.

Analyze the production management problems in planning, loading, scheduling,

<u>UNIT II</u>

Flexible Manufacturing Cell: Introduction to group technology, Benefits of group technology, Part family, Methods of grouping the parts into part family: The visual inspection method, Part classification and coding system, MICLASS classification and coding system, Opitz classification system, Production flow analysis, Composite part, Limitations of group technology, Application of group technology.

<u>UNIT III</u>

FMS Processing Stations: Machining Centers, Turning centers, CMM, Washing/ Deburringstation. Different types FMS Layouts.

UNIT IV

Material Handling Systems: An introduction, Conveyor, AGV, ASRS, Robots, etc. and their salient features.

<u>UNIT V</u>

Management Technology: Tool Management, Configuration planning and routing, Production Planning and Control, Scheduling and control, Computer Networks and Control.

Text Books:

- 1. Groover, M.P "Automation, Production Systems and Computer Integrated Manufacturing", Prentice Hall of India Pvt.Ltd. New Delhi 2009
- 2. Tempelmeier.H and Kuhn.H. "Flexible Manufacturing system: Decision support for design and operation", John Wiley and Sons 2003.
- 3. Maleki A. "Flexible Manufacturing Systems: the technology and management". Prentice Hall International –2009
- 4. Analysis of production systems and Operations and production Management, Rajagopal Kurnool, CBS publishers
- 5. Modern Production, Operations Management, Baffa & RakeshSarin.

- 1. Operations Management, S.N. Chary.
- 2. Inventory Control Theory and Practice, Martin K. Starr and David W. Miller.
- 3. Production Control A Quantitative Approach , John E. Biegel.
- 4. Production & Operations Management, KanishkaBedi, Oxford Univ Press.

Course Title	COMPUTE Elec	CR GR ctive-I	M. Tech. CA	AD/CAN	1 II Sem			
Course Code	Category	Hours / Week Credits				Maximum Marks		
1853207	Professional Core (PCC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
		3	0	0	3	40	60	100
	Mid Exam Duratio	n: 2H	rs			End Exam	Duratio	n : 3Hrs
Course Objec	c tive : udents will learn prin	ciples	and r	oractio	res used	in the creation	n of 3D	models

• The students will learn principles and practices used in the creation of 3D models; mathematical principles of geometric modeling; theory and application of modeling techniques, Study representation schemes for curves, surfaces, solids, and other spatial data and the impact of representation on graphics algorithms. Topics include spline curves and surfaces, quadric surfaces, and how to design, program and analyze algorithms and systems for interactive 3D shape modeling.

Course Outco	Course Outcomes: On successful completion of this course, the students will be able to						
CO 1	Student can able to understand to various display devices and algorithms.						
CO 2	Student can able to understand applications of geometric modeling techniques.						
CO 3	Student can able to understand various clipping algorithms.						
CO 4	Gains Knowledge Various transformations and shading algorithms.						

<u>UNIT I</u>

Introduction to computer graphics: Color CRT raster scan monitors, plasma display & liquid crystal display monitors, computer input devices, hard copy devices. Raster scan graphics: Line drawing algorithms – DDA &Bresenham''s algorithms, circle generation, general function rasterization, displaying lines, characters and polygons. Filling algorithms: polygon filling, edge fill algorithm, seed fill algorithm.

UNIT II

Line clipping: Simple visibility algorithm, Cohen-Sutherland subdivision line clipping algorithm, midpoint sub division algorithm. Polygon clipping: polygon clipping, reentrant polygon clipping – Sutherland – Hodgeman algorithm, character clipping, 3D- clipping.

<u>UNIT III</u>

Transformations: Cartesian and homogeneous coordinate systems two dimensional and three dimensional transformations – scaling, rotation, Shearing, Zooming, viewing transformation, reflection, rotation about an axis, concatenation.

<u>UNIT IV</u>

Rendering: Hidden line removal algorithms, surface removal algorithms, painters, Warnock, Z-buffer algorithm.

Shading algorithms: Constant intensity algorithm, Phong's shading algorithm, gourand shading algorithm, Comparison of shading algorithms.

Text Books:

- 1. Mathematical Elements for computer graphics, David. Rodgers, TMH
- 2. Computer Graphics C version, Donald Hearn and M.PaulineBaker, Pearson/PHI
- 3. Computer Graphics Principles & Practice, C.Foley, Vndom, Fener, Hughes, 2/e, Pearson Publications.
- 4. Computer Graphics and Automation, M.C. Trivedi, Jaico Pub./ PearsonEducation

- 1. CAD/CAM Theory, Ibrahim Zeid,
- 2. Computer Graphics second edition, Zhigandxiang, Roy Plastock, Schaum"soutlines, TMH.
- 3. Computer Graphics, Steven Harrington, TMH
- 4. Principles of computer Graphics, ShaliniGovil, PHI, 2005, Springer.

Course Title	CNC TE PRO	CHNC GRAN Electiv	M. Tech. CAD/CAM II Sem					
Course Code	Category	Hou	rs / V	Veek	Credits	Maximum Marks		
1853208	Professional Core (PCC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
		0	40	60	100			
	Mid Exam Dura	ation: 2	2Hrs	End Exam 1	Duration	: 3Hrs		

Course Objective:

To provide knowledge on principle, constructional features, programming, tooling and work holding devices in CNC machine tools Upon completion of this subject, student will be able to:

- Understand of CNC machine tools and machining centres
- Describe constructional features of CNC machine tools
- Explain drives and tooling systems used in CNC machine tools
- Understand feedback and adaptive control of CNC machines
- Write simple programs for CNC turning and machining centres
- To understand economics and maintenance of CNC machine Tools

Course Outcomes: On successful completion of this course, the students will be able to

CO 1	Student gains knowledge various CNC and DNC Machining Centers.
CO 2	Student's gains knowledge on Various Feed Back Devices.
CO 3	Students know APT Language and various Motion Commands.
CO 4	Student have knowledge on various maintenance.

<u>UNIT I</u>

Introduction to CNC Machine tools: Evolution of Computerized control in manufacturing, Components, Working principle of CNC, DNC and Machining centers. Constructional features of CNC machine tools: Introduction, Spindle drives, Transmission belting, axes feed drives, Slide ways, Ball screws.

<u>UNIT II</u>

Accessories: Work tables, Spindles, Spindle heads, Beds and Columns, Tooling – Automatic Tool changer (ATC). Feedback devices: Introduction, Digital incremental displacement measuring systems, Incremental rotary encoders, Moire fringes, Digital absolute measuring system.

<u>UNIT III</u>

Electro-magnetic analogue position transducers: Principle, advantages, characterstics,Synchros, Synchro-Resolvers, Inductos, Laser interferometer. Control Systems and interface: Open and closed loop systems, Micro processor based CNC systems, block diagram of typical CNC system, description of hard ware and soft interpolation systems, Standard and optional features of CNC control systems.

UNIT IV

APT programming: APT language structure, APT geometry, Definition of point, time, vector, circle, plane, patterns and matrices. APT motion commands: setup commands, point-to point motion commands, continuous path motion commands, post processor commands, control commands, Macro subroutines, Part programming preparation for typical examples.

Economics and Maintenance of CNC machine tools: Introduction, factors influencing Selection of CNC machines, Cost of operation of CNC machines, Maintenance features of CNC machines, Preventive maintenance, Documentation, Spare parts, Training in Maintenance.

Text Books:

- 1. Computer Numerical Control Machines Dr.RadhaKrishnanan, New Central Book Agency
- 2. Computer Numerical Control Machines Hans B.Keif and T. Frederick Waters Macmillan/McGrawHill
- 3. Cnc Programming Techniques: An Insider's Guide to Effective Methods Applications Hardcover – Import, 9 December 2005 by <u>Peter Sm</u>id
- 4. CNC PROGRAMMING Principles and Applications | MICHAEL MATTSON | Cengage

- 1. CNC Machines B.S. Aditahn and Pabla
- 2. CNC Machining technology Springer Verlag
- 3. Computer Numerical Machine tools G.E. Thyer, NEWNES
- 4. CNC Machining Technology Volume 1 Design Development and CIM Strategies By GrahamT. Smith

Course Tit	tle	MIN	I PRO	JEC	Г		M. Tech. CA	D/CAM	I II Sem
Course Co	de	Category	Hour	s / W	eek	Credits	Maxim	um Mar	·ks
1853209		Professional Core (PCC)	L T P			С	Continuous Internal Assessment	End Exam	Total
		0 0 4 2 100 100							
		Mid Exam Durati	ion: 2I	Irs			End Exam l	Duration	: 3Hrs
Course Out	tcom	es: On successful	compl	etion	of tl	nis course,	the students w	vill be ab	ole to
CO 1	Stu opt	dents will get an o for internship.	pportu	nity to	o wo	rk in actua	al industrial env	vironmen	t if they
CO 2	In case of mini project, they will solve a live problem using software / analytical / computational tools.								
CO 3	Stu pre	Students will learn to write technical reports, Students will develop skills to present and defend their work in front of technically gualified audience.							

Syllabus Contents:

Students can take up small problems in the field of design engineering as mini project. It can be related to solution to an engineering problem, verification and analysis of experimental data available, conducting experiments on various engineering subjects, material characterization, studying a software tool for the solution of an engineering problem etc.

Course Title		CAE LA	M. Tech. CAD/CAM II Sem					
Course Code	Category	s Maximum Marks						
1853210	Professional Core (PCC)	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
		0	0	2	50	50	100	
Mic	End Exam D	uration	: 3Hrs					

Course Objectives: Engineering design begins with market surveys whereby a product need is identified. Based on this identification, a conceptual design is created. Before the product can be manufactured, the conceptual design has to be refined and a detailed design produced. Detailing a conceptual design involves determining material specifications, dimensions, tolerances, performance measures, etc. There are determined by engineering analysis.

Course Outcomes: On successful completion of this course, the students will be able to

CO 1	Learn Finite Element Analysis Fundamentals.
CO 2	Formulate Design Problems into FEA.
CO 3	Perform Engineering Simulations Using Finite Element Analysis Software's.
CO 4	Understand Ethical issues Related to the utilization of FEA in the Industry.

LIST OF EXPERIMENTS

- 1). Analysis of Simple Supported Beam
- 2). Analysis of bar Elements
- 3). Analysis of Rectangular Plate
- 4). Analysis of Truss Element Problem
- 5).Modal Analysis of Cantilever Beam
- 6).Modal Analysis of Solid
- 7). Thermal Analysis on Compound block only conduction
- 8). Thermal Analysis of Rectangular Plate

Any FEA Software- Creo-4.0 simulate, Autodesk Nastran in CAD, Ansys, Hyper Mesh Abaqus, etc

CO 4

Course	Title	C	AM	LAB	5		M. Tech. CAl	D/CAM	II Sem		
Course	Code	Category	y Hours / Week Credits				Maximu	m Mark	s		
18532	211	Professional	Т	Continuous	End	Total					
		Core (PCC)					Internal	Exam			
				Assessment							
	0 0 4 2 50 50 100										
	Mid Exam Duration: 2HrsEnd Exam Duration : 3Hrs										
Course O engineerin students sl	bjectiv ng com hould b	es: The objective of ponents using cor e able to Design an	of CA npute id ass	AD/C er aio semb	AM I ded to le of t	ab is to des ools. After he parts usi	sign, assemble a the completion ng geometric mo	nd manu of the odelling.	facture course,		
Course O	utcom	es: On successful	comp	oletio	n of t	his course,	the students wi	ill be abl	le to		
CO 1	CNC Techniques and coding.										
CO 2	Effective learning of G-coding and M-Coding.										
CO 3	Hands	on operation on C	NC I	Lathe	and I	Milling Mad	chines.				

Any Four Experiments covering Step Turning,

Taper Turning Multiple Turning, Threading, Etc.

Effective Selection of CNC Tools.

Any Four Experiments Covering Slotting, Drilling Circular Pocketing, Profile Milling Etc

Any CAM Software:- CNC Train, Cut miller ,Edge Cam, Solid Cam Etc...

M.TECH.-III- SEMESTER SYLLABUS

Course	Title	RA	PID PR ELEC	OTOTY TIVE -	ZPING V		M. Tech. CAD/CAM III Sem			
Course	Code	Category	Ho	ours/We	ek	Credits	Maximum Marks			
1853.	301	PJ	L	Т	Р	Continuous Internal Assessment	End Exams	Total		
			3	0	3	40	60	100		
Mid Exa	am Dur	ation: 2Hrs			End Exam Duration: 3Hrs					
Course	Objecti	ves:								
• To st	udy the	basics of RPT								
• To st	udy the	various process	s in RP							
• To st	udy the	principles of R	apid too	ling and	reverse	engineerir	ng			
• To st	udy the	Rapid tooling-l	Direct ,I	ndirect s	oft & H	ard tooling	5			
Course	Outcon	nes: On succes	sful con	pletion	of this	course, the	e students will	be able t	0	
CO 1	At end	l of semester stu	idents g	ains kno	wledge	on various	types rp techn	iques		
CO 2	Student gains various operation principles and applications									
CO 3	Variou	Various Part building errors in rp Process								
CO 4	Gains	Gains knowledge in Rapid tooling								
CO 5	Gains	Knowledge in v	various s	stl conve	rsions					

Introduction: Need for the compression in product development, History of RP system, Survey of applications, Growth of RP industry and classification of RP system.

<u>UNIT_II</u>

Stereo Lithography System: Principle, Process parameter, Process details, Data preparation, Data files and machine details, Applications.

<u>UNIT III</u>

Fusion Decomposition Modeling: Principle, process parameter, Path generation, Applications. Solid ground curing: Principle of operation, Machine details, Applications.

<u>UNIT IV</u>

Laminated Object Manufacturing: Principle of Operation, LOM materials, Process details, Applications Concepts Modelers: Principle, Thermal jet printer, Sanders model market, 3-D printer, GenisysXs printer HP system, Object Quadra system.

Rapid Tooling: Direct soft tooling- selective laser sintering of sand casting molds, Direct ACES injection molding, SL composite tooling, Indirect soft tooling-Arc spray metal tooling, silicone rubber molds, spin casting with vulcanized rubber molds, Castable resin molds, Castable ceramic molds, Plaster molds ,casting, Direct Hard tooling-Rapid tool, laminated metal tooling, Direct metal laser sintering tooling, Pro metal rapid tooling, Indirect Hard tooling-3D keltool, EDM Eletrodes ,Eco tool, copy millingSoftware for RP: STL files, Overview of Solid view, magics, imics, magic communication, etc.Internet based software, Collaboration tools. Rapid Manufacturing ProcessOptimization: Factors influencing accuracy, Data preparation error, Part building error, Error in finishing, Influence of build orientation.

Text Books:

1. Rapid Prototyping, principles & Applications, by Rafiq noorani

2. Rapid Manufacturing ", Flham D.T & Dinjoy S.S, Verlog London 2001

3. Rapid automated", Lament wood, Indus Press New York.

4. Rapid Prototyping- Principles & Applications"-Third Edition ,world scientific publishing co pte Ltd

Reference Books:

1. Engineering Design and Rapid Prototyping by Ali k.kamrani & Emad Abouel Nasr

- 2. "Stereo lithography and other RP & M Technologies", Paul F.Jacobs, SME, NY 1996
- 3. Rapidly Prototyping Interfaces With Indesign, Carla viviana coleman
- 4. Rapid Prototyping Technology, Selection & Application, Kenneth G. Cooper

~ -		AUTOMA	FION IN	MANU	FACTU	RING	M. Tech. CA	D/CAM	III Sem
Course '	l'itle		ELEC	TIVE -V	7				
Course C	Code	Category	ours/We	Maximum Marks					
18533(02	PJ	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
			3	40	60	100			
Mid Exar	Mid Exam Duration: 2HrsEnd Exam Duration: 3Hrs								
Course of	bjectiv	ve:							
To empl	nasize	the knowled	ge on	the qu	ality i	mproveme	ent, automatio	on, and	advanced
manufactu	uring t	echniques to cr	eate the	highest-	caliber	products q	uickly, efficier	ntly, inexp	pensively,
and in syn	nchron	ization with the	marketi	ng, sales	s, and cı	istomer se	rvice of the cor	npany.	
Course O	outcon	nes: On succes	sful com	pletion	of this o	course, the	e students will	be able t	0
CO 1	At the	end of semester	r student	t knows	Various	Automati	on Principles a	nd strateg	ies.
CO 2	Gains knowledge in various materials Handling equipment's.								
CO 3	Various Automation and Production lines.								
CO 4	Studer	nts knows vario	us Quali	ty contro	ol Paran	neters.			

Over View Of Manufacturing And Automation: Production systems, Automation in production systems, Automation principles and strategies, Manufacturing operations, production facilities. Basic elements of an automated system, levels of automation; Hardware components for automation and process control, programmable logic controllers and personal computers.

<u>UNIT II</u>

Material Handling And Identification Technologies: Material handling, equipment, Analysis. Storage systems, performance and location strategies, automated storage systems, AS/RS, types, Automatic identification methods, Barcode technology, RFID.

<u>UNIT III</u>

Manufacturing Systems And Automated Production Lines: Manufacturing systems: components of a manufacturing system, Single station manufacturing cells; Manual Assembly lines, line balancing Algorithms, Mixed model Assembly lines, Alternative Assembly systems. Automated production lines, Applications, Analysis of transfer lines.

<u>UNIT IV</u>

Automated Assembly Systems: Fundamentals, Analysis of Assembly systems, Cellular manufacturing, part families, cooling, and production flow analysis. Group Technology and flexible Manufacturing systems, Quantitative Analysis.

<u>UNIT V</u>

Quality Control and Support Systems: Quality in Design and manufacturing, inspection principles and strategies, Automated inspection, contact Vsnon contact, CMM. Manufacturing support systems. Quality function deployment, computer aided process planning, concurrent engineering, shop floor control, just in time and lean production.

Text Books:

- 1. Automation, production systems and computer integrated manufacturing/ Mikell.PGroover/PHI/3rd edition/2012
- 2. Automation, Production Systems and CIM/ Mike J P. Grower/PHI
- 3. Automation Production Systems And Computer-Integrated Manufacturing 2019 Edition by Mikell Groover,
- 4. Automation, Production Systems, and Computer-integrated Manufacturing| By Pearson by Mikkel P Groover

- 1. CAD/CAM/CIM/ P. Radha Krishnan & S. Subrahamanyarn and Raju/New Age International Publishers/2003
- 2. System Approach to Computer Integrated Design and Manufacturing/ Singh/John Wiley /96.
- 3. Computer Aided Manufacturing/Tien-Chien Chang, Richard A. Wysk and Hsu-Pin Wang/ Pearson/ 2009
- 4. Manufacturing Automation by Altintas Yusuf

Course	Title	ADV.	ANCE T ELEC	TOOL D TIVE -)ESIGN V	1	M. Tech. CAD/CAM III Sem				
Course	Code	Category	egory Hours/Week Credits					Maximum Marks			
1853.	303	PJ	L	Т	Continuous Internal Assessment	End Exams	Total				
			3	0	3	40	60	100			
Mid Exa	am Dur	ation: 2Hrs				End Exam Duration: 3Hrs					
Course	Objecti Fo reduc	ve: the expenditu	re of ma	anufactu	ring and	l improve	quality				
Course	Outcon	nes: On success	sful com	pletion	of this	course, the	e students will	be able t	0		
CO 1	Descri	be tool design 1	nethods	and pun	ch and	die manufa	acturing technic	ques			
CO 2	Select	material for cu	tting too	ls and g	ages; cla	assify vari	ous cutting too	ls and gag	ges and		
	identif	y their nomenc	lature								
CO 3	Describe the principles of clamping, drill jigs and computer aided jig design										
CO 4	Design	Design fixtures for milling, boring, lathe, grinding, welding; identify fixtures and									
	cutting	cutting tools for NC machine tools									
CO5	Explai	n the principles	of dies	and mou	ulds desi	gn					

TOOL DESIGN METHODS :Introduction, Design procedure, Statement of the problem, Needs Analysis – Tentative design solutions, Finished design, Drafting and design techniques tooling drawings, Punch and die Manufacturing Techniques.

<u>UNIT II</u>

TOOLING MATERIALS :Introduction, Properties of tool materials, Metal cutting tools, Singlepoint cutting tools, Milling cutters, Drills and Drilling, Reamer classification, Taps, Tap classification, The selection of carbide cutting tools, Determining the insert thicknes s forcarbide tools, Various heat treatments.

<u>UNIT III</u>

GAGES AND GAGE DESIGN: Introduction, Fixed Gages, Gage Tolerances, The selection of material for Gages, Indicating Gages, and Automatic gages.

<u>UNIT IV</u>

DESIGN OF DRILL JIGS, FIXTURES AND DIES:

DRILL JIGS Principles of location, Locating methods and devices, Principles of clamping, Drill jigs, Chip formation in drilling, General considerations in the design of drill jigs, Drill bushings, Methods of construction, Drill jigs and modern manufacturing, Computer aided Jig design.

FIXTURES Introduction, Fixtures and economics, Types of Fixtures, Vise Fixtures, Milling Fixtures, Boring Fixtures, Broaching Fixtures, Lathe Fixtures, Grinding Fixtures, Types of Die construction, Computer aided Fixture Design.

DIES Die-design fundamentals, Blanking and Piercing die construction, Pilots, Strippers and pressure pads, Presswork materials, Strip layout, Short -run tooling for Piercing, Bending dies, Forming dies, Drawing operations.

TOOL DESIGN FOR NUMERICALLY CONTROLLED MACHI: Introduction, The need for numerical control, A basic explanation of numeric control, Numerical control systems in use today, Fixture design for numerically controlled machine tools, Cutting tools for numerical control, Tool holding methods for numerical control, Automatic tool changers and tool positioners, Tool presetting, Introduction, Genera 1 explanation of the Brown and Sharpe machine, tooling for Automatic screw machines.

Text Books:

- 1. Donaldson, Cyrll, George H. LeCain, Goold, V.C., "Tool Design", Tata McGraw HillPublishing Company Ltd., 36th Reprint 2006.
- 2. Joshi, PrakashHiralal, "Tooling data", Wheeler Publishing, 2000
- 3. Sharma, P.C., "Machine Tool and Tool Design ", S Chand Company. 2004.
- 4. Mehta N.K., "Machine Tool Design", Tata McGraw Hill, 1989

- 1. Paquin, J. R. and Crowley, R. E., Die design fundamentals, Ind. Press Inc., New York, 1987
- 2. Tool designauthor: Cyril donaldson / h. lecain george / v. c. goold
- 3. Textbook of Machine Tools and Tool Design Sharma P. C.
- 4. Tool Design (SIE) by <u>Cyril Donaldson</u> (Author), <u>George H. Lecain</u> (Author), <u>VC</u> <u>Goold</u> (Author)

Course	Title	BUS	BUSINESS ANALYTICS (Open Elective) M. Tech. CAD/CAM III Se								
Course	Code	Category	Hours/Week Credits				Maximum Marks				
18703	304	PJ	L T P C Continuous End Internal Exams Assessment								
			3	0	0	3	40	60	100		
Mid Exa	ım Dur	ation: 2Hrs					End Exan	n Duratio	on: 3Hrs		
Course o	objectiv	ve:									
• U	Jndersta	rstand the role of business analytics within an organization.									
• A	analyze elations	alyze data using statistical and data mining techniques and understand tionships between the underlying business processes of an organization.									
• T so	o gain : olve bu:	an understandii siness problem:	ng of ho [.] s and to	w manag support	gers use manage	business a rial decisio	analytics to for on-making.	mulate an	ıd		
• T d	'o beco ata. Use	me familiar wi	th proce	esses ne Operation	eded to ions rese	develop, a	report, and ana niques.	alyze busi	iness		
• N	/lange b	usiness process	s using a	nalytica	l and ma	inagement	tools.				
• A	nalyze	and solve prob	lems fro	m differ	rent indu	ustries suc	h as manufactu	ıring, serv	vice,		
re	etail, so	ftware, banking	g and fin	ance, sp	orts, ph	armaceutic	cal, aerospace e	etc.			
Course (Outcon	nes: On succes	sful com	pletion	of this of	course, the	e students will	be able t	0		
CO 1	Studen	ts will demons	trate kno	wledge	of data a	analytics					
CO 2	Studen	ts will demons	trate the	ability o	of think of	critically in	n making decis	ions based	d on		
~~~	data ar	nd deep analytic	cs.								
CO 3	Studen	ts will demo	nstrate	the abil	ity to	use techn	ical skills in	predicat	ive and		
<b>CO A</b>	prescri	puve modeling	to supp	ort Dusii	iess aec	ISION-MAKI	ng	11 * * *			
CO 4	Studen	its will demons	trate the	ability t	o transla	ite data int	o clear, action	ableinsigh	nts		

Business analytics: Overview of Business analytics, Scope of Business analytics, Business Analytics Process, Relationship of Business Analytics Process and organisation, competitive advantages of Business Analytics. Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of probability distribution and data modeling, sampling and estimation methods overview.

## <u>UNIT II</u>

Trendiness and Regression Analysis: Modeling Relationships and Trends in Data, simple Linear Regression. Important Resources, Business Analytics Personnel, Data and models for Business analytics, problem solving, Visualizing and Exploring Data, Business Analytics Technology.

## <u>UNIT III</u>

Organization Structures of Business analytics, Team management, Management Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of Business analytics, Managing Changes. Descriptive Analytics, predictive analytics, predictive Modelling, Predictive analytics analysis, Data Mining, Data Mining Methodologies, Prescriptive analytics analytics analytics Process, Prescriptive Modelling, nonlinear Optimization.

Forecasting Techniques: Qualitative and Judgmental Forecasting, Statistical Forecasting Models, Forecasting Models for Stationary Time Series, Forecasting Models for Time Series with a Linear Trend, Forecasting Time Series with Seasonality, Regression Forecasting with Casual Variables, Selecting Appropriate Forecasting Models. Monte Carlo Simulation and Risk Analysis: Monte Carle Simulation Using Analytic Solver Platform, New-Product Development Model, Newsvendor Model, Overbooking Model, Cash Budget Model.

## <u>UNIT V</u>

Decision Analysis: Formulating Decision Problems, Decision Strategies with the without Outcome Probabilities, Decision Trees, The Value of Information, Utility and Decision Making. Recent Trends in : Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data journalism.

#### **Text Books:**

- 1. Business analytics Principles, Concepts, and Applications by Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, Pearson FTPress.
- 2. Business Analytics by James Evans, personsEducation.
- 3. Business NLP For Dummies by Lynne Cooper
- 4. Technical Analysis of the Currency Market: Classic Techniques for Profiting from Market Swings and Trader Sentiment by <u>Boris Schlossberg</u>

- 1. Human Capital Systems, Analytics, and Data Mining by Robert C. Hughes.
- 2. Analytic Function Theory of Several Variables by Junjiro Noguchi
- 3. Statistics for Management | Eighth Edition | By Pearson Paperback by <u>I. Levin Richard</u>
- 4. Business Analytics: Data Analysis and Decision Making by <u>S. Christian Albright</u> (Author), <u>Wayne L. Winston</u> (Author)

Course	Title	INI (	DUSTR Open H	IAL SA Elective)	M. Tech. CAD/CAM III Sem					
Course	Code	Category	H	ours/We	ek	Maxin	num Marl	ks		
18703	305	PJ	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			3	0	40	60	100			
Mid Exa	am Dur	ation: 2Hrs			End Exam Duration: 3Hrs					
Course	Objecti	ves:				•				
• To kn source	ow abo e model	ut Industrial saf s	ety prog	grams an	d toxico	ology, Indu	strial laws, re	gulations	and	
• To un	derstand	d about fire and	explosi	on, prev	entive n	nethods, re	lief and its sizi	ng methoo	ds	
• To and	alyse in	dustrial hazards	s and its	risk asse	essment.					
Course	Outcon	nes: On succes	sful con	npletion	of this	course, the	e students will	be able t	0	
CO 1	Analyz	ze the effect of	release	of toxic s	substanc	es				
CO 2	Understand the industrial laws, regulations and source models									
CO 3	Apply	Apply the methods of prevention of fire and explosions.								
CO 4	Under	Understand the relief and its sizing methods.								
CO5	Under	stand the metho	ds of ha	zard ide	ntificati	on and pre	ventive measu	res.		

Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

## UNIT II

Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

## <u>UNIT III</u>

Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication,

iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

## <u>UNIT IV</u>

Fault tracing: Fault tracing-concept and importance, decision tree concept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv.Internal combustion engine, v. Boiler,

Electrical motors, Types of faults in machine tools and their general causes.

Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

## Text Books:

- 1. Industrial safety and management, c.rayasfanl,david.w.riesce pearson,2015
- 2. Industrial safety and management, industrial managemnt, jack e.daugherty, gi publications
- 3. Safety management. l.m.hernold,mc graw hill publications,july 2017
- 4. Principle of industrial safety and management, willie hammer, dennnis price, printice hall international series, 2018

- 1. Maintenance Engineering Handbook, Higgins & Morrow, Da InformationServices.
- 2. Maintenance Engineering, H. P. Garg, S. Chand and Company.
- 3. Pump-hydraulic Compressors, Audels, Mcrew HillPublication.
- 4. Foundation Engineering Handbook, Winterkorn, Hans, Chapman & HallLondon.

Course	Title	OPERAT	TIONS I (Open	RESEA	RCH O e)	PEN	M. Tech. CAD/CAM III Sem				
Course	Code	Category	Category Hours/Week Credits Maximum Marks								
1870.	306	PJ	L	Continuous Internal Assessment	End Exams	Total					
		3 0 0 3 40 60									
Mid Exa	am Dur	eation: 2Hrs End Exam Duration: 3Hr									
Course C	bjectiv	es:									
• ]	Го ітра	rt knowledge in	concep	ts and to	ols of C	<b>perations</b>	Research				
• ]	To unde	rstand mathema	tical mo	dels use	d in Op	erations Re	esearch				
• ]	To apply	these techniqu	es const	ructively	y to mak	e effective	e business decis	sions			
Course	Outcon	nes: On succes	sful con	pletion	of this	course. the	e students will	be able t	0		
CO 1	Studer	nts should able	to apply	the dvi	namic p	rogrammiı	ng to solve pro	blems of	discreet		
	and co	ntinuous variab	oles.			0	8				
CO 2	Students should able to apply the concept of non-linear programming.										
CO 3	Students should able to carry out sensitivity analysis.										
CO 4	Studer	nt should able to	o model	the real	world p	roblem and	l simulate it.				
					- T						

Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex

Techniques, Sensitivity Analysis, Inventory Control Models

## <u>UNIT II</u>

Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex

method - sensitivity analysis - parametric programming

## <u>UNIT III</u>

Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow

problem - CPM/PERT

## <u>UNIT IV</u>

Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

## <u>UNIT V</u>

Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

## Text Books:

- 1. Operations Research by K.Rajagopal,PHI.
- 2. Operations Research by Hilier, Liebermann, McGraw Hill Education
- 3. Introduction to Operations Research, Taha, PHI
- 4. Operations Research by Frederick S. Hillier McGraw Hill Higher Education

- 1. Operations Research: Methods & Problems, Maurice Saseini, Arhur Yaspan & Lawrence Friedman
- 2. Operations Research, Allen, David Edmund .
- 3. Operations Research, J.K. Sharma.
- 4. Operations Research, Wayne L. Winston, Thomson Brooks, Cole

		COST MANAGEMENT OF ENGINEERING					M. Tech. CAD/CAM III Sem		
Course	Title	PROJECTS							
		(Open Elective)							
Course Code		Category	Hours/Week			Credits	Maximum Marks		
1870307		РЈ					Continuous	End	
			L	Т	Р	C	Internal	Exams	Total
							Assessment		
			3	0	0	3	40	60	100
Mid Exam Duration: 2HrsEnd Exam Duration: 3Hrs									
Course Objectives:									
• Establish systems to help streamline the transactions between corporate support									
departments and the operating units.									
• II. Devise transfer pricing systems to coordinate the buyer-supplier interactions between									
decentralized organizational operating units.									
• III. Use pseudo profit centers to create profit maximizing behavior in what were formerly									
cost centers.									
Course Outcomes: On successful completion of this course, the students will be able to									
CO 1	Understand the concept of strategic cost management, strategic cost analysis – target								
	costing, life cycle costing and Kaizen costing and the cost drive concept								
CO 2	Describe the decision-making; relevant cost, differential cost, incremental cost and								
	opportunity cost, objectives of a costing system.								
CO 3	Understand the meaning and different types of project management and project								
	execution, detailed engineering activities.								
<b>CO 4</b>	Understand the project contracts, cost behaviour and profit planning types and contents,								
	Bar charts and Network diagram								
CO5	Analyse by using quantitative techniques for cost management like PERT/CPM.								

Introduction and Overview of the Strategic Cost Management Process Cost concepts in decisionmaking; Relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making.

## <u>UNIT II</u>

Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and non- technical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process.

## <u>UNIT III</u>

Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis. Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector.
## <u>UNIT IV</u>

Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints. Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

## UNIT-V

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

#### **Text Books:**

- 1. Project Management 2.0: Leveraging Tools, Distributed Collaboration, and Metrics for Project Success 1st Edition, Kindle Editionby <u>Harold Kerzner</u>
- 2. Cost Management Of Capital Projects by Kurt Heinze, Taylor & Francis Inc.
- 3. Cost Management of Construction Projects Donald Towey
- 4. The Engineer's Cost HandbookTools for Managing Project CostsBy Richard E. Westney

- 1. Architect's Essentials of Cost Management Michael D. Dell'Isola
- 2. Charles T. Horngren and George Foster, Advanced ManagementAccounting
- 3. Robert S Kaplan Anthony A. Alkinson, Management & CostAccounting
- 4. AshishK. Bhattacharya, Principles & Practices of Cost Accounting A. H. Wheelerpublisher
- 5. N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Book Co.Ltd.

Course	Title	СОМ	POSIT (Open	E MAT	S	M. Tech. CAD/CAM III Sem				
Course	Code	Category	Ho	ours/We	ek	Credits	Maxin	Maximum Marks		
							Continuous	End		
18703	308	PJ	L	Т	P	C	Internal	Exams	Total	
							Assessment			
			3	0	0	3	40	60	100	
Mid Exa	ım Dur	ation: 2Hrs					End Exar	n Duratio	on: 3Hrs	
Course	Objecti	ves:								
• F	amiliar	ization with the	basic e	xpressio	ns and r	nethods us	ed in the mech	anics of		
С	composite structures. A complete theoretical and practical knowledge of composite									
n	materials.									
• T	The mec	hanical behavio	our of an	isotropi	c materi	als and ho	w they differ fi	rom classi	cal	
С	onstruc	tion materials.		1			5			
Course	Outcon	nes: On succes	sful con	nletion	of this	ourse the	e students will	he able t	0	
CO 1	Under	stand the speci	fics of 1	nechani	cal beh	vior of la	vered compos	ites comp	ared to	
COT	isotron	vic materials		ncenam			yered compos	ites comp		
$CO_2$	Apply	constitutive equ	iations	of comp	osite ma	terials and	understand m	chanical		
	hehavi	or at micro ma	cro and	mero la	vel	unais allu	understand me	channeal		
<b>CO 1</b>	behavior at micro, macro and meso level.									
003	Determine stresses and strains in composites.									
CO 4	Apply	failure criteria	and criti	cally ev	aluate th	ne results.				
CO 5	Unders moistu	stand the mech	anical b	ehavior	of comp	osites due	to variation in	n tempera	ture and	

# <u>UNIT I</u>

INTRODUCTION: Definition – Classification and characteristics of Composite materials. Advantages and application of composites. Functional requirements of reinforcement and matrix. Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

# <u>UNIT II</u>

**REINFORCEMENTS:** Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Isostrain and Isostress conditions.

# <u>UNIT III</u>

Manufacturing of Metal Matrix Composites: Casting – Solid State diffusion technique, Cladding – Hot isostatic pressing. Properties and applications. Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering. Manufacturing of Carbon –

Carbon composites: Knitting, Braiding, Weaving. Properties and applications.

# <u>UNIT IV</u>

Manufacturing of Polymer Matrix Composites: Preparation of Moulding compounds and prepregs – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.

## UNIT V

Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

#### **Text Books:**

- 1. Material Science and Technology Vol 13 Composites by R.W. Cahn VCH, West Germany.
- 2. Materials Science and Engineering, An introduction. WD Callister, Jr., Adapted by R. Balasubramaniam, John Wiley & Sons, NY, Indian edition, 2007.

- 1. Hand Book of Composite Materials-ed-Lubin.
- 2. Composite Materials K.K.Chawla.
- 3. Composite Materials Science and Applications Deborah D.L.Chung.
- 4. Composite Materials Design and Applications Danial Gay, Suong V. Hoa, and Stephen
- 5. W. Tasi.

Course Title	W	ASTE 7 (Open	FO ENE Electiv	CRGY e)		M. Tech. CAD/CAM III Sem			
<b>Course Code</b>	Category	He	ours/We	ek	Credits	Maximum Marks			
1870309	PJ	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
		3	0	0	3	40	60	100	
Mid Exam Duration: 2Hrs						End Exan	n Duratio	on: 3Hrs	

## **Course Objectives:**

- To enable students to understand of the concept of Waste to Energy.
- To link legal, technical and management principles for production of energy form waste.
- To learn about the best available technologies for waste to energy.
- To analyze of case studies for understanding success and failures.
- To facilitate the students in developing skills in the decision making process.

Course Outcomes: On successful completion of this course, the students will be a	ble to
----------------------------------------------------------------------------------	--------

CO 1	Apply the knowledge about the operations of Waste to Energy Plants
CO 2	Analyse the various aspects of Waste to Energy Management Systems.
CO 3	Carry out Techno-economic feasibility for Waste to Energy Plants

**CO 4** Apply the knowledge in planning and operations of Waste to Energy plants

# <u>UNIT I</u>

Introduction to Energy from Waste: Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors

## <u>UNIT II</u>

Biomass Paralysin: Pyrolysis – Types, slow fast – Manufacture of charcoal – Methods - Yields and application – Manufacture of pyrolytic oils and gases, yields and applications.

## UNIT III

Biomass Gasification: Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Fluidized bed gasifiers – Design, construction and operation – Gasifier burner arrangement for thermal heating – Gasifier engine arrangement and electrical power – Equilibrium and kinetic consideration in gasifier operation.

## UNIT IV

Biomass Combustion: Biomass stoves – Improved 70hallahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation – Operation of all the above biomass combustors.

## <u>UNIT V</u>

Biogas: Properties of biogas (Calorific value and composition) – Biogas plant technology and status – Bio energy system – Design and constructional features – Biomass resources and their classification – Biomass conversion processes – Thermo chemical conversion – Direct combustion – biomass gasification – pyrolysis and liquefaction – biochemical conversion – anaerobic digestion – Types of biogas Plants – Applications – Alcohol production from biomass – Bio diesel production – Urban waste to energy conversion – Biomass energy programme inIndia.

# **Text Books:**

- 1. Waste-to-Energy Multi-Criteria Decision Analysis for Sustainability Assessment and Ranking 2020 Edition by Jingzheng Ren , Elsevier
- 2. . Waste-to-Energy Eduardo Jacob-Lopes, Leila Queiroz Zepka and Maria Isabel Queiroz
- 3. The Solid Waste Handbook by William D. Robinson
- 4. Biomass Conversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John Wiley & Sons,1996

- 1. Non Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.
- 2. Biogas Technology A Practical Hand Book Khandelwal, K. C. and Mahdi, S. S., Vol. I & II, Tata McGraw Hill Publishing Co. Ltd., 1983.
- 3. Food, Feed and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt. Ltd., 1991.
- 4. Waste segregation and potential for recycling by Jacob.M.Kihila

Course	Title	Title DISSERTATION PHASE-I					M. Tech. CAD/CAM III Sem			
Course	Code	Category	Hou	rs/We	ek	Credits	Maxim	um Marks		
1853310		CORE	L	Т	Р	С	ContinuousEndInternalExams		Total	
			0	0	20	10	100	-	100	
Internal	nal Assessment									
Course	urse Objectives:									
Course	Outcom	nes : On succ	essful c	omple	tion o	f this cours	e, the students w	vill be able	to	
CO 1	Studen	ts will learn t	o surve	y the re	elevan	t literature s	such as books, nat	tional/interr	national	
	referee	d journals an	d contac	t resou	irce p	ersons for th	e selectedtopic of	f research.		
CO 2	Studen	ts will be able	e to use	differe	nt exp	perimental te	echniques.			
CO 3	Students will be able to use different software/ computational/analytical tools.									
CO 4	Students will be able to design and develop an experimental set up/equipment/test rig.									
CO 5	Studen conclu	ts will be able sions from th	e to cone e results	duct te after a	sts on analyz	existing set	ups/equipment's	and drawlo	ogical	

# M.TECH.-IV- SEMESTER SYLLABUS

Course	Title	DISS	ERTAT	TION I	PHAS	E-II	M. Tech. CA	D/CAM IV	/ Sem		
Course	Code	Category	Hours/Week Credits			Credits	Maxim	um Marks			
18534	401	Major Project	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total		
			0	0	32	16	50	50	100		
Internal	<b>Assess</b>	Assessment									
Course	Course Objectives:										
Course	Outcom	nes : On succ	essful c	omple	tion o	f this cours	e, the students w	vill be able	to		
CO 1	Studen	ts will develo	op attitue	le of li	felong	g learning an	nd will develop in	terpersonal	skills to		
	deal w	ith people wo	orking in	divers	sified	field will.					
CO 2	Students will learn to write technical reports and research papers to publish atnational										
	and international level.										
CO 3	Students will develop strong communication skills to defend their work in front of										
	technic	ally qualified	audien	ce.							

# AUDIT COURSE-I & II SYLLABUS

Course T	itle	ENGLISI	H FOR F WR (Audit	RESEAR ITING : Course	CH PA	PER	M. Tech. CAD/CAM I/II Sem			
Course C	ode	Category	Ho	ours/We	Maximum Marks					
1870A0	)1	Audit Course	L	Т	Continuous Internal Assessment	End Exams	Total			
2 0 0 0 40 40									40	
	Mid Exam Duration: 2 Hours									
Course Ol	bjecti	ves:								
• Un • Lea	dersta arn ab	nd that how to out what to wr	improv ite in ea	e your w ch sectio	riting s	kills and l	evel of readabil	ity		
• Un	dersta	nd the skills no	eeded w	hen writ	ing a T	itle Ensure	the good quali	tv of pape	er at verv	
firs	first-time submission									
Course Outcomes: On successful completion of this course, the students will be able to										
CO1 U	Understand Writing skills and level of Readability.									
CO 2 A	Analyz	e what to write	e in each	section	•					

# <u>UNIT I</u>

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness.

# <u>UNIT II</u>

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticising, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction.

# <u>UNIT III</u>

Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check. key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

# <u>UNIT IV</u>

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions.

## <u>UNIT V</u>

Useful phrases, how to ensure paper is as good as it could possibly be the first- time submission

# Text Books:

- 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman's book .
- 4. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011.

# **Reference Books:**

1. Adrian Wallwork, English for Academic Research: Grammar Usage and Style, Springer.

Course	Title	DISAS	STER M (Audit	IANAG Course	EMEN e)	T	M. Tech. CAD/CAM I/II Sem			
Course	Code	Category	Ho	ours/We	ek	Credits	Maximum Marks			
<b>1870</b> A	A02	Audit Course	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
			2	0	0	0	40		40	
	Mid	Exam Duratio	n: 2 Ho	urs						
Course	Objecti	ves:								
Course	<ul> <li>Lea redu</li> <li>Crit prace</li> <li>dever rele</li> <li>criti app: hom</li> </ul>	action and hum ically evaluate ctice from mult elop an unders vance in spec ically understar roaches, plannine country or	anitarian disaster iple pers tanding of ific type nd the st ing and the cour-	risk red spectives of standa es of di rengths a program <u>atries th</u>	se. s. ards of sasters and we and we and we of this	and human humanitan and conf aknesses o in different rk in.	titarian response a rian response a lict situations. f disaster man nt countries, pa	e policy and practiand practi	nd ical their	
CO 1	e Outcomes: On successful completion of this course, the students will be able to									
	Understand foundations of hazard, disasters and natural/social phenomena.									
CO 2	Analyz	ze Repercussion	ns of dis	asters ar	nd haza	rds.				
CO 3	Unders	stand key conce	epts in d	isaster ri	sk redu	ction and	humanitarian re	esponse.		

# <u>UNIT I</u>

**Introduction to Disaster:** Definition, Factors and Significance; Difference Between Hazard And Disaster; Natural And Manmade Disasters: Difference, Nature, Types And Magnitude.

# <u>UNIT II</u>

**Repercussions Of Disasters And Hazards**: Economic Damage, Loss Of Human And Animal Life, Destruction Of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.

## <u>UNIT III</u>

## **Disaster Prone Areas In India**

Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics.

## <u>UNIT IV</u>

## **Disaster Preparedness and Management**

Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

## <u>UNIT V</u>

#### **Risk Assessment**

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global And National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation In Risk Assessment And Warning, People'sParticipation In Risk Assessment. Strategies for Survival.

#### **Disaster Mitigation**

Meaning, Concept and Strategies Of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs Of Disaster Mitigation In India.

#### **Text Books:**

1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company.

2. Sahni, Pardeep Et.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.

3. Goel S. L. , Disaster Administration And Management Text And Case Studies" ,Deep &Deep Publication Pvt. Ltd., New Delhi.

- 1. Fundamentals of Disaster Management, Shekhawat R.S, Bhatnagar Harshul.
- 2. Disaster management, Ruthra, Lakshmi Publications.
- Disaster Management and Preparedness, Nidhi Gauba Dhawan, Ambrina Sardar Khan, CBS Publishers.

		CANCE				A T						
~		SANSI	KII FU KNOW	VLEDG	FINIC.	AL	M. Tech. CA	D/CAM I	/II Sem			
Course	Title		(Audit	Course	<u>e</u> )							
Course	Code	Category	Ho	urs/We	ek	Credits	Maximum Marks					
<b>1870</b> A	A03	Audit Course	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total			
Mid Exam Duration: 2 Hours												
Course Objectives:												
	•To get	a working kno	wledge	in illustr	rious Sa	anskrit, the	scientific langu	uage in the	e world			
	•Learni	ing of Sanskrit	to impro	ove brain	n functi	oning.						
	•Learni	ing of Sanskrit	to devel	op the lo	ogic in	mathemati	cs, science &ot	her				
	subjec	ets enhancing th	ne memo	ory powe	er.							
	•The er	ngineering scho	lars equ	ipped w	ith San	skrit will b	be able to explor	re				
	the hu	ige knowledge	from an	cient lite	erature.							
Course Outcomes: On successful completion of this course, the students will be able to												
CO 1	Understand Sanskrit grammar and Composition.											
CO 2	Understand roots of technical information about Sanskrit literature.											
CO 3	Under	stand Technica	l concep	ts of Eng	gineeri	ng.						

# <u>UNIT I</u>

Alphabets in Sanskrit,

Past/Present/Future Tense,

Simple Sentences

# <u>UNIT III</u>

Order

Introduction of roots

Technical information about Sanskrit Literature

# <u>UNIT III</u>

Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics

## Text Books:

1. Dr. Vishwas, "Abhyaspustakam" – Samskrita-Bharti Publication, New Delhi.

2. "Teach Yourself Sanskrit" Prathama Deeksha-Vempati Kutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication.

3. Suresh Soni, "India's Glorious Scientific Tradition", Ocean books (P) Ltd., New Delhi.

Course	Title	VA	LUE E (Audit	DUCAT Course	rion		M. Tech. CAD/CAM I/II Sem			
Course	Code	Category	Ho	Hours/Week Credits			Maximum Marks			
<b>1870</b> A	1870A04 Audit Course L T		Р	С	Continuous Internal Assessment	End Exams	Total			
2 0 0 40									40	
Mid Exam Duration: 2 Hours										
Course	Objecti	ves:								
	<ul><li>Unc</li><li>Imb</li><li>Lot</li></ul>	lerstand value of be good value	of educa s in stud	tion and lents	self- d	evelopmen	it tor			
Course	• Let						101 • • • • • • • • • • • • • • • • • • •	l ha ahla	4.0	
Course	Outcon	ies: On succes	siui con	npieuon	of this	s course, u	ne students wi	i de able	10	
CO 1	Knowledge of self-development									
CO 2	Learn the importance of Human values									
CO 3	Develo	oping the overa	ll person	ality						

# <u>UNIT I</u>

Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism.

Moral and non- moral valuation. Standards and principles. Value judgements

# <u>UNIT II</u>

Importance of cultivation of values.

Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriotism. Love for nature, Discipline

# UNIT III

Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline.

Punctuality, Love and Kindness.

Avoid fault Thinking.

Free from anger, Dignity of labour.

Universal brotherhood and religious tolerance.

True friendship.

Happiness Vs suffering, love for truth.

Aware of self-destructive habits.

Association and Cooperation.

Doing best for saving nature

# <u>UNIT IV</u>

Character and Competence –Holy books vs Blind faith. Self-management and Good health. Science of reincarnation. Equality, Nonviolence ,Humility, Role of Women. All religions and same message. Mind your Mind, Self-control.

Honesty, Studying effectively

## Text Books:

- 1. Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi.
- 2. John Haffai, Lead on & How to win over worry, World Book Publisher.
- 3. Swami Vivekananda, Call to the Youth for Nation Building, Advaita Ashrama, Calcutta.
- 4. Swami Vivekananda, Youth and Modern India, Rama Krishna Mission, Chennai.

#### **Reference Books:**

1. M.G. Chitakra, Education and Human values, A.P.H. Publishing corporation, New Delhi.

Course	Title	CONS	STITUT (Audit	ION OI Course	A	M. Tech. CA	D/CAM l	[/II Sem				
Course	Code	Category	Но	urs/We	ek	Credits	Maximum Marks					
<b>1870</b> A	A05	Audit Course	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total			
	2 0 0 0 40 -											
	Mid Exam Duration: 2 Hours											
Course	Objecti	ves:										
2	<ul> <li>Civil</li> <li>To consider of n</li> <li>To Bols</li> <li>Rev</li> </ul>	l rights perspect address the gr stitutional roles ationhood in the address the shevik olution in 1917	tive. cowth of and entit e early y role of 7 and its	Indian lement to ears of I sociali	opinio o civil a ndian r sm in on the i	on regardin and econom ationalism India af initial draft	ng modern Ind nic rights as well ter the comm ting of the India	lian intell l as the em encement <u>in Constit</u>	ectuals' ergence of the ution			
Course	Outcom	es: On succes	sful con	pletion	of this	s course, t	he students wil	l be able	to			
CO 1	Discus the arri	s the growth o val of Gandh	f the der i in Ind	nand for	civil r itics	ight s in In	idia for the bulk	c of India	is before			
<b>CO 2</b>	Discuss the intellectual origins of the frame work of argument that informed the conceptualization of sociall reforms leading to revolution in India											
CO 3	under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.											
<b>CO 4</b>	uss the	passage of the	e Hindu	Code ]	Bill of	1956						

# <u>UNIT I</u>

## History of Making of the Indian Constitution:

History, Drafting Committee, (Composition & Working)

#### Philosophy of the Indian Constitution:

Preamble, Salient Features

## <u>UNIT II</u>

#### Contours of Constitutional Rights & Duties:

Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

## <u>UNIT III</u>

#### **Organs of Governance:**

Parliament, Composition, Qualifications and Disqualifications, Powers and Functions

# Executive:

President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions.

# <u>UNIT IV</u>

## Local Administration:

District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation.

**Pachayati raj:** Introduction, PRI: Zila Pachayat. Elected officials and their roles, CEO Zila Pachayat: Position and role.

**Block level:** Organizational Hierarchy (Different departments), **Village level:** Role of Elected and Appointed officials, Importance of grass root democracy.

# UNIT V

## **Election** Commission:

Election Commission: Role and Functioning, Chief Election Commissioner and Election Commissioners.

State Election Commission: Role and Functioning.

Institute and Bodies for the welfare of SC/ST/OBC and women.

## Text Books:

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

Course	Title	Р	EDAGO (Audit	GY STU Course	U <b>DIES</b>		M. Tech. CAD/CAM I/II Sem			
Course	Code	Category	Но	urs/We	ek	Credits	Maximum Marks			
<b>1870</b> A	<b>A06</b>	Audit Course	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
		40		40						
	Mid	Exam Duratio	n: 2 Ho	urs						
Course Objectives:										
• Review existing evidence on the review topic to inform programme design and										
	poli	cv making un	dertaken	by the	DfID. c	ther agend	cies and researc	chers.	0	
	• Idei	ntify critical evi	dence og	ins to gu	ide the	develonme	nt			
Course	Outcon	ning entied evi	achee ge	nlation	of this		ha studanta wil	l ha ahla i	to	
Course	Outcon	les: Oli succes	siui con	ipieuon	or uns	course, u	ne students wi	i be able	10	
CO 1	/hat pe	edagogical pra	ctices a	re bein	g used	by teacl	hers in formal	l and inf	formal	
	classroo	oms in developi	ng coun	tries?						
CO 2	2 That is the evidence on the effectiveness of these pedagogical practices, in what									
	conditions, and with what population of learners?									
CO 3	How can teacher education (curriculum and practicum) and the school curriculum and									
	guidanc	e materials bes	t suppor	t effecti	ve peda	igogy?	,			

# <u>UNIT I</u>

## Introduction and Methodology:

Aims and rationale, Policy background, Conceptual framework and terminology

Theories of learning, Curriculum, Teacher education.

Conceptual framework, Research questions.

Overview of methodology and Searching.

# <u>UNIT II</u>

Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries.

Curriculum, Teacher education.

# <u>UNIT III</u>

Evidence on the effectiveness of pedagogical practices

Methodology for the in depth stage: quality assessment of included studies.

How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?

Theory of change.

Strength and nature of the body of evidence for effective pedagogical practices.

Pedagogic theory and pedagogical approaches.

Teachers' attitudes and beliefs and Pedagogic strategies.

# UNIT IV

Professional development: alignment with classroom practices and follow- up support

Peer support

Support from the head teacher and the community.

Curriculum and assessment

Barriers to learning: limited resources and large class sizes

# <u>UNIT V</u>

## **Research gaps and future directions**

Research design

Contexts Pedagogy

Teacher education Curriculum and assessment Dissemination and research impact.

## Text Books:

1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.

2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.

3. Akyeampong K (2003) Teacher training in Ghana - does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.

4. Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282.

## **Reference Books:**

- 1. Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.
- 2. Chavan M (2003) Read India: A mass scale, rapid, 'learning to read' campaign.

# Web Links:

1. www.pratham.org/images/resource%20working%20paper%202.pdf.

Course Title	STRESS	MANA (Audit	GEMEN Course	M. Tech. CAD/CAM I/II Sem				
<b>Course Code</b>	Category	Hours/Week Credi				Maximum Marks		
1870A07	Audit Course	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total
		2	0	0	0	40		40
Mid								
Course Objectiv	ves:							
• To achieve overall health of body and mind.								
To overco	ome stress		-					
Course Outcomes: On successful completion of this course, the students will be able to								
<b>CO 1</b> evelop healthy mind in a healthy body thus improving social health also								
CO 2 Improv	e efficiency.		•					

# <u>UNIT I</u>

Definitions of Eight parts of yog. (Ashtanga)

# <u>UNIT II</u>

- Yam and Niyam. Do's and Don't's in life.
- i) Ahinsa, satya, astheya, bramhacharya and aparigraha
- ii) Shaucha, santosh, tapa, swadhyay, ishwarpranidhan

# UNIT III

• Asan and Pranayam

i)Various yog poses and their benefits for mind & bodyii)Regularization of breathing techniques and its effects- Types of pranayam

# **Text Books:**

- 1. 'Yogic Asanas for Group Tarining-Part-I'' : Janardan Swami Yogabhyasi Mandal, Nagpur
- 2. Swami Vivekananda, "Rajayoga or conquering the Internal Nature".
- 3. Advaitashrama (Publication Department), Kolkata.
- 4. Acharya Yatendra, Yoga & Stress Management, Finger Print Publishing.

	DEDSON	TAT 1717	DEVEL	ODME	יאיד				
Course Title	THROUG	H LIFE SK (Audit	DEVEL ENLIGH ILLS Course	M. Tech. CAD/CAM I/II Sem					
Course Code	Category Hours/Week Credits				Credits	Maximum Marks			
1870A08	Audit Course	L	Т	Р	С	Continuous Internal Assessment	End Exams	Total	
		2	0	0	0	40		40	
Mid Exam Duration: 2 Hours									
Course Objectiv	ves:								
• To learn to achieve the highest goal happily									
• To become a person with stable mind, pleasing personality and determination									
• To awaken wisdom in students.									
Course Outcomes: On successful completion of this course, the students will be able to									
CO1 tudy of persona	of Shrimad-Bh llity and achiev	agwad- ve the l	Geeta highest	will goal ir	help the 1 life	student in	developin	g his	
CO 2 he person who has studied Geeta will lead the nation and mankind to peace and prosperity									
CO3 tudy of	Neetishatakan	n will l	nelp in	develo	ping versa	tile personality	v of stude	ents	
<u>UNIT I</u>									
Neetisa	takam-Holistic	develor	ment of	persor	nality				
• Verses-	- 19.20.21.22 (w	visdom)		r					
• Verses-	<ul> <li>Verses- 29 31 32 (pride &amp; heroism)</li> </ul>								
• Verses-	- 26.28.63.65 (v	irtue)	-~)						
• Verses-	• Verses- 52 53 59 (dont's)								
• Verses-	- 71,73,75,78 (d	o's)							
IINIT II	, , , , ,	,							
	ich to day to day	v work	nd dutie	NC .					
Shrima	Shrimad Bhagwad Geeta : Chapter 2-Verses 41, 47,48								
<ul> <li>Similiau Diagwau Occia : Chapter 2- v clscs 41, 47,40,</li> <li>Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5, 13, 17, 23, 35</li> </ul>									
<ul> <li>Chapter 18-Verses 45 46 48</li> <li>Chapter 18-Verses 45 46 48</li> </ul>									
- Chapte	1 10 7 01505 +5,	ru, <del>т</del> u.							
UNIT III									
• Statem	ents of basic kn	owledge	<b>.</b>						

- Shrimad Bhagwad Geeta: Chapter2-Verses 56, 62, 68
- Chapter 12 Verses 13, 14, 15, 16,17, 18
- Personality of Role model. Shrimad Bhagwad Geeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,42,
- Chapter 4-Verses 18, 38,39
- Chapter18 Verses 37,38,63

# Text Books:

- 1. "Srimad Bhagavad Gita" by Swami Swarupananda Advaita Ashram (Publication Department), Kolkata
- 2. Bhartrihari's Three Satakam (Niti-sringar-vairagya) by P.Gopinath,Rashtriya Sanskrit Sansthanam, New Delhi.
- 3. Enlightenment: Personality Development and management, Sagir Ahmed, Independently Published.